行测75分必备数字推理题解题技巧大全.doc.doc
.公务员考试必备之数字推理题解题技巧大全目录第一部分:数字推理题的解题技巧 1第二部分:数学运算题型及讲解 6第三部分: 数字推理题的各种规律 8第四部分:数字推理题典! 16数字的整除特性 63继续题典 65本题典说明如下:本题典的所有题都适用!1) 题目部分用黑体字2) 解答部分用红体字3) 先给出的是题目,解答在题目后。.4) 如果一个题目有多种思路,一并写出.5) 由于制作仓促,题目可能有错的地方,请谅解!第一部分:数字推理题的解题技巧行政能力倾向测试是公务员考试必考的一科,数字推理题又是行政测试中一直以来的固定题型。如果给予足够的时间,数字推理并不难;但由于行政试卷整体量大,时间短,很少有人能在规定的考试时间内做完,尤其是对于文科的版友们来说,数字推理、数字运算(应用题)以及最后的资料分析是阻碍他们行政拿高分的关卡。并且,由于数字推理处于行政 A 类的第一项,B 类的第二项,开头做不好,对以后的考试有着较大的影响。数字推理考察的是数字之间的联系,对运算能力的要求并不高。所以,文科的朋友不必担心数学知识不够用或是以前学的不好。只要经过足够的练习,这部分是可以拿高分的,至少不会拖你的后腿。一、解题前的准备1.熟记各种数字的运算关系。如各种数字的平方、立方以及它们的邻居,做到看到某个数字就有感觉。这是迅速准确解好数字推理题材的前提。常见的需记住的数字关系如下:(1 )平方关系:2-4,3-9,4-16,5-25,6-36,7-49,8-64,9-81,10-100,11-121,12-144 13-169,14-196,15-225,16-256,17-289,18-324,19-361,20-400(2 )立方关系:2-8,3-27,4-64,5-125,6-216,7-343,8-512,9-729,10-1000(3 )质数关系:2,3,5,7,11,13,17,19,23,29.(4 )开方关系:4-2,9-3,16-4.以上四种,特别是前两种关系,每次考试必有。所以,对这些平方立方后的数字,及这些数字的邻居(如,64,63 ,65 等)要有足够的敏感。当看到这些数字时,立刻就能想到平方立方的可能性。熟悉这些数字,对解题有很大的帮助,有时候,一个数字就能提供你一个正确的解题思路。如 216 ,125,64()如果上述关系烂熟于胸,一眼就可看出答案但一般考试题不会如此弱智,实际可能会这样 215,124 ,63,() 或是 217,124,65,()即是以它们的邻居(加减 1),这也不难,一般这种题 5 秒内搞定。.2.熟练掌握各种简单运算,一般加减乘除大家都会,值得注意的是带根号的运算。根号运算掌握简单规律则可,也不难。3.对中等难度以下的题,建议大家练习使用心算,可以节省不少时间,在考试时有很大效果。二、解题方法按数字之间的关系,可将数字推理题分为以下十种类型:1.和差关系。又分为等差、移动求和或差两种。(1)等差关系。这种题属于比较简单的,不经练习也能在短时间内做出。建议解这种题时,用 口算。12,20,30, 42,()127,112,97,82 ,()3,4,7,12,(), 28(2)移动求和或差。从第三项起,每一项都是前两项之和或差,这种题初次做稍有难度,做多了也就简单了。1,2,3,5 ,(),13A 9 B 11 C 8 D7选 C。1+2=3,2+3=5,3+5=8,5+8=132,5,7,(),19 ,31 ,50A 12 B 13 C 10 D11选 A0,1,1,2 ,4,7 ,13 ,()A 22 B 23 C 24 D 25选 C。注意此题为前三项之和等于下一项。一般考试中不会变态到要你求前四项之和,所以个人感觉这属于移动求和或差中最难的。5,3,2,1 ,1,()A-3 B-2 C 0 D2选 C。2.乘除关系。又分为等比、移动求积或商两种(1)等比。从第二项起,每一项与它前一项的比等于一个常数或一个等差数列。8,12,18,27,(40.5)后项与前项之比为 1.5。6,6,9,18, 45,(135)后项与前项之比为等差数列,分别为 1,1.5,2 ,2.5,3(2)移动求积或商关系。从第三项起,每一项都是前两项之积或商。2,5,10,50, (500 )100,50 ,2 ,25 ,(2/25)3,4,6,12, 36,(216) 此题稍有难度,从第三项起,第项为前两项之积除以 21,7,8,57,( 457) 后项为前两项之积+13.平方关系1,4,9 ,16,25,(36),4966, 83,102,123,(146) 8,9,10,11 , 12 的平方后+24.立方关系1,8,27,(81),125.3,10 ,29,(83 ),127 立方后+20,1,2 ,9,(730) 有难度,后项为前项的立方+15.分数数列。一般这种数列出难题较少,关键是把分子和分母看作两个不同的数列,有的还需进 行简单的通分,则可得出答案1/2 4/3 9/4 16/5 25/6 (36/7) 分子为等比,分母为等差2/3 1/2 2/5 1/3 (1/4) 将 1/2 化为 2/4,1/3 化为 2/6,可知 下一个为 2/86.带根号的数列。这种题难度一般也不大,掌握根号的简单运算则可。限于计算机水平比较烂,打不出根号,无法列题。7.质数数列2,3,5 ,( 7),114,6,10,14,22 ,(26) 质数数列除以 220,22,25 ,30,37,(48) 后项与前项相减得质数数列。8.双重数列。又分为三种:(1)每两项为一组,如1,3,3 ,9,5,15 ,7,(21) 第一与第二,第三与第四等每两项后项与前项之比为 32,5,7 ,10,9 ,12 ,10,(13)每两项之差为 31/7,14,1/21,42,1/36 ,72 ,1/52 ,() 两项为一组,每组的后项等于前项倒数*2(2)两个数列相隔,其中一个数列可能无任何规律,但只要把握有规律变化的数列就可得出结果。22, 39,25 ,38 ,31,37,40,36,(52 ) 由两个数列,22,25,31,40,()和 39,38,37 ,36 组成,相互隔开,均为等差。34, 36,35 ,35 ,(36),34,37,(33) 由两个数列相隔而成,一个递增,一个递减(3)数列中的数字带小数,其中整数部分为一个数列,小数部分为另一个数列。2.01, 4.03, 8.04, 16.07, (32.11) 整数部分为等比,小数部分为移动求和数列。双重数列难题也较少。能看出是双重数列,题目一般已经解出。特别是前两种,当数字的个数超过 7 个时,为双重数列的可能性相当大。9.组合数列。此种数列最难。前面 8 种数列,单独出题几乎没有难题,也出不了难题,但 8 种数列关系两两组合,变态的甚至三种关系组合,就形成了比较难解的题目了。最常见的是和差关系与乘除关系组合、和差关系与平方立方关系组合。只有在熟悉前面所述 8 种关系的基础上,才能较好较快地解决这类题。1,1,3,7,17 ,41()A 89 B 99 C 109 D 119选 B。此为移动求和与乘除关系组合。第三项为第二项*2+第一项65,35,17,3,()A 1 B 2 C 0 D 4.选 A。平方关系与和差关系组合,分别为 8 的平方+1,6 的平方-1,4 的平方+1 ,2 的平方-1,下一个应为 0 的平方+1=14,6,10,18,34 ,()A 50 B 64 C 66 D 68选 C。各差关系与等比关系组合。依次相减,得 2,4,8, 16(),可推知下一个为32,32+34=666,15,35,77,()A 106 B 117 C 136 D 163选 D。等差与等比组合。前项*2+3,5,7 依次得后项,得出下一个应为 77*2+9=1632,8,24,64,()A 160 B 512 C 124 D 164选 A。此题较复杂,幂数列与等差数列组合。2=1*2 的 1 次方,8=2*2 的平方,24=3*2的 3 次方, 64=4*2 的 4 次方,下一个则为 5*2 的 5 次方=1600,6,24,60,120 ,()A 186 B 210 C 220 D 226选 B。和差与立方关系组合。0=1 的 3 次方-1,6=2 的 3 次方-2,24=3 的 3 次方-3,60=4 的 3 次方-4 ,120=5 的 3 次方-5。1,4,8,14 ,24 ,42,()A 76 B 66 C 64 D68选 A。两个等差与一个等比数列组合依次相减,得 3,4 ,6,10 , 18,()再相减,得 1, 2,4,8,(),此为等比数列,下一个为 16,倒推可知选 A。10.其他数列。2,6,12,20,()A 40 B 32 C 30 D 28选 C。2=1*2,6=2*3,12=3*4,20=4*5,下一个为 5*6=301,1,2 ,6,24,()A 48 B 96 C 120 D 144选 C。后项 =前项*递增数列。 1=1*1,2=1*2,6=2*3,24=6*4,下一个为 120=24*51,4,8 ,13,16,20 ,()A20 B 25 C 27 D28选 B。每三项为一重复,依次相减得 3,4,5。下个重复也为 3,4 ,5,推知得 25。27, 16,5,(),1/7A 16 B 1 C 0 D 2选 B。依次为 3 的 3 次方,4 的 2 次方,5 的 1 次方,6 的 0 次方,7 的-1 次方。这些数列部分也属于组合数列,但由于与前面所讲的和差,乘除,平方等关系不同,故在此列为其他数列。这种数列一般难题也较多。综上所述,行政推理题大致就这些类型。至于经验,我想,要在熟练掌握各种简单运算关系的基础上,多做练习,对各种常见数字形成一种知觉定势,或者可以说是条件反射。看到这些数字时,就能立即大致想到思路,达到这种程度,一般的数字推理题是难不了你了,考试时十道数字推理在最短的时间内正确完成 7 道是没有问题的。但如果想百尺竿头更进一步,还请继续多做难题。强烈建议继续关注我们的清风百合江苏公务员,在下次公务员考试之前,复习冲.刺的时候,我们会把一些难题汇总并做解答,对大家一定会有更多的帮助的。讲了这么多,自我感觉差不多了。这篇文章主要是写给没有经过公务员考试且还未开始准备公务员考试的版友看的属于入门基础篇,高手见笑了。仓促完成,难免有不妥之处,欢迎版友们提出让我改善。目前准备江苏省公务员考试时间很充裕,有兴趣的朋友可以先开始看书准备。也欢迎有对推理题有不懂的朋友把题目帖出来,大家讨论。我不可能解出所有题,但我们清风版上人才众多,潜水者不计其数,肯定会有高手帮助大家。第二部分:数学运算题型及讲解一、对分问题例题:一根绳子长 40 米,将它对折剪断;再对剪断;第三次对折剪断,此时每根绳子长多少米?A、5B、10C 、15D、20解答:答案为 A。对分一次为 2 等份,二次为 2×2 等份,三次为 2×2×2 等份,答案可知。无论对折多少次,都以此类推。二、“栽树问题”例题:(1)如果一米远栽一棵树,则 285 米远可栽多少棵树?A、285B、286C、287D、284(2)有一块正方形操场,边长为 50 米,沿场边每隔一米栽一棵树,问栽满四周可栽多少棵树?A、200B、201C、202D、199解答:(1)答案为 B。1 米远时可栽 2 棵树,2 米时可栽 3 棵树,依此类推,285 米可栽286 棵树。.(2)答案为 A。根据上题,边长共为 200 米,就可栽 201 棵树。但起点和终点重合,因此只能栽 200 棵。以后遇到类似题目,可直接以边长乘以 4 即可行也答案。考生应掌握好本题型。三、跳井问题例题:青蛙在井底向上爬,井深 10 米,青蛙每次跳上 5 米,又滑下来 4 米,象这样青蛙需跳几次方可出井?A、6 次 B、5 次 C、9 次 D、10 次解答:答案为 A。考生不要被题中的枝节所蒙蔽,每次上 5 米下 4 米实际上就是每次跳 1 米,因此 10 米花 10 次就可全部跳出。这样想就错了。因为跳到一定时候,就出了井口,不再下滑。四、会议问题例题:某单位召开一次会议。会前制定了费用预算。后来由于会期缩短了 3 天,因此节省了一些费用,仅伙食费一项就节约了 5000 元,这笔钱占预算伙食费的 1/3。伙食费预算占会议总预算的 3/5,问会议的总预算是多少元?A、20000B 、 25000C、30000D、35000解答:答案为 B。预算伙食费用为: 5000÷1/3=15000 元。15000 元占总额预算的3/5,则总预算为:15000÷3/5=25000 元。本题系 1997 年中央国家机关及北京市公务员考试中的原题(或者数字有改动)。五、日历问题例题:某一天小张发现办公桌上的台历已经有 7 天没有翻了,就一次翻了 7 张,这 7 天的日期加起来,得数恰好是 77。问这一天是几号?A、13B、14C、15D 、17解答:答案为 C。7 天加起来数字之和为 77,则平均数 11 这天正好位于中间,答案由此可推出。六、其他问题例题:(1)在一本 300 页的书中,数字“1”在书中出现了多少次?A、140B、160C、180D、120(2)一个体积为 1 立方米的正方体,如果将它分为体积各为 1 立方分米的正方体,并沿一条直线将它们一个一个连起来,问可连多长(米)?A、100B、10C、1000D 、10000(3)有一段布料,正好做 16 套儿童服装或 12 套成人服装,已知做 3 套成人服装比做 2 套儿童服装多用布 6 米。问这段布有多少米?A、24B、36C、48D 、18(4)某次考试有 30 道判断题,每做对一道题得 4 分,不做或做错一道题倒扣 2 分,小周共得 96 分,问他做对了多少道题?A、24B、26C、28D 、25(5)树上有 8 只小鸟,一个猎人举枪打死了 2 只,问树上还有几只鸟?A、6B、4C、2D 、0解答:(1)答案为 B。解题时不妨从个位、十位、百位分别来看,个位出现“1”的次数为30,十位也为 30,百位为 100。.(2)答案为 A。大正方体可分为 1000 个小正方体,显然就可以排 1000 分米长,1000分米就是 100 米。考生不要忽略了题中的单位是米。(3)答案为 C。设布有 X 米,列出一元一次方程:X/6×3-X/2×2=6,解得 X=48米。(4)答案为 B。设做对了 X 道题,列出一元一次方程:4×X-(30-X)×2=96,解得 X=26。(5)答案为 D。枪响之后,鸟或死或飞,树上是不会有鸟了。第三部分: 数字推理题的各种规律一题型: 等差数列及其变式【例题 1】2,5,8,()A 10 B 11 C 12 D 13【解答】从上题的前 3 个数字可以看出这是一个典型的等差数列,即后面的数字与前面数字之间的差等于一个常数。题中第二个数字为 5,第一个数字为 2,两者的差为 3,由观察得知第三个、第二个数字也满足此规律,那么在此基础上对未知的一项进行推理,即 8+3=11,第四项应该是 11,即答案为 B。【例题 2】3,4,6,9,(),18A 11 B 12 C 13 D 14【解答】答案为 C。这道题表面看起来没有什么规律,但稍加改变处理,就成为一道非常容易的题目。顺次将数列的后项与前项相减,得到的差构成等差数列 1,2,3 ,4,5,。显然,括号内的数字应填 13。在这种题中,虽然相邻两项之差不是一个常数,但这些数字之间有着很明显的规律性,可以把它们称为等差数列的变式。. 等比数列及其变式【例题 3】3,9,27,81()A 243 B 342 C 433 D 135【解答】答案为 A。这也是一种最基本的排列方式,等比数列。其特点为相邻两个数字之间的商是一个常数。该题中后项与前项相除得数均为 3,故括号内的数字应填 243。【例题 4】8,8,12,24,60,()A 90 B 120 C 180 D 240【解答】答案为 C。该题难度较大,可以视为等比数列的一个变形。题目中相邻两个数字之间后一项除以前一项得到的商并不是一个常数,但它们是按照一定规律排列的;1,1.5,2 ,2.5,3,因此括号内的数字应为 60×3=180。这种规律对于没有类似实践经验的应试者往往很难想到。我们在这里作为例题专门加以强调。该题是 1997 年中央国家机关录用大学毕业生考试的原题。【例题 5】8,14,26,50,()A 76 B 98 C 100 D 104【解答】答案为 B。这也是一道等比数列的变式,前后两项不是直接的比例关系,而是中间绕了一个弯,前一项的 2 倍减 2 之后得到后一项。故括号内的数字应为 50×2-2=98。 等差与等比混合式【例题 6】5,4,10,8,15,16,(),()A 20,18 B 18,32 C 20 ,32 D 18,32【解答】此题是一道典型的等差、等比数列的混合题。其中奇数项是以 5 为首项、等差为5 的等差数列,偶数项是以 4 为首项、等比为 2 的等比数列。这样一来答案就可以容易得知是C。这种题型的灵活度高,可以随意地拆加或重新组合,可以说是在等比和等差数列当中的最有难度的一种题型。 求和相加式与求差相减式【例题 7】34,35,69,104,()A 138 B 139 C 173 D 179【解答】答案为 C。观察数字的前三项,发现有这样一个规律,第一项与第二项相加等于.第三项,34+35=69,这种假想的规律迅速在下一个数字中进行检验,35+69=104 ,得到了验证,说明假设的规律正确,以此规律得到该题的正确答案为 173。在数字推理测验中,前两项或几项的和等于后一项是数字排列的又一重要规律。【例题 8】5,3,2,1,1,()A -3 B -2 C 0 D 2【解答】这题与上题同属一个类型,有点不同的是上题是相加形式的,而这题属于相减形式,即第一项 5 与第二项 3 的差等于第三项 2,第四项又是第二项和第三项之差 所以,第四项和第五项之差就是未知项,即 1-1=0,故答案为 C。 求积相乘式与求商相除式【例题 9】2,5,10,50,()A 100 B 200 C 250 D 500【解答】这是一道相乘形式的题,由观察可知这个数列中的第三项 10 等于第一、第二项之积,第四项则是第二、第三两项之积,可知未知项应该是第三、第四项之积,故答案应为D。【例题 10】100,50,2,25,()A 1 B 3 C 2/25 D 2/5【解答】这个数列则是相除形式的数列,即后一项是前两项之比,所以未知项应该是2/25,即选 C。 求平方数及其变式【例题 11】1,4,9,(),25,36A 10 B 14 C 20 D 16【解答】答案为 D。这是一道比较简单的试题,直觉力强的考生马上就可以作出这样的反应,第一个数字是 1 的平方,第二个数字是 2 的平方,第三个数字是 3 的平方,第五和第六个数字分别是 5、 6 的平方,所以第四个数字必定是 4 的平方。对于这类问题,要想迅速作出反应,熟练掌握一些数字的平方得数是很有必要的。【例题 12】66,83,102,123,()A 144 B 145 C 146 D 147