欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    例说二项式定理的常见题型及解法 人教版.doc

    • 资源ID:57183806       资源大小:346KB        全文页数:6页
    • 资源格式: DOC        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    例说二项式定理的常见题型及解法 人教版.doc

    例说二项式定理的常见题型及解法http:/www.DearEDU.com小越中学 严君君二项式定理的问题相对较独立,题型繁多,解法灵活且比较难掌握。二项式定理既是排列组合的直接应用,又与概率理论中的三大概率分布之一的二项分布有着密切联系。二项式定理在每年的高考中基本上都有考到,题型多为选择题,填空题,偶尔也会有大题出现。本文将针对高考试题中常见的二项式定理题目类型一一分析如下,希望能够起到抛砖引玉的作用。一、求二项展开式1“”型的展开式例1求的展开式;解:原式= = = 小结:这类题目一般为容易题目,高考一般不会考到,但是题目解决过程中的这种“先化简在展开”的思想在高考题目中会有体现的。2 “”型的展开式 例2求的展开式;分析:解决此题,只需要把改写成的形式然后按照二项展开式的格式展开即可。本题主要考察了学生的“问题转化”能力。3二项式展开式的“逆用”例3计算;解:原式=小结:公式的变形应用,正逆应用,有利于深刻理解数学公式,把握公式本质。二、通项公式的应用1确定二项式中的有关元素例4已知的展开式中的系数为,常数的值为 解: 令,即依题意,得,解得2确定二项展开式的常数项例5展开式中的常数项是 解: 令,即。 所以常数项是3求单一二项式指定幂的系数例6(03全国)展开式中的系数是 ;解:= 令则,从而可以得到的系数为: ,填三、求几个二项式的和(积)的展开式中的条件项的系数例7的展开式中,的系数等于 解:的系数是四个二项展开式中4个含的,则有 例8(02全国)的展开式中,项的系数是 ; 解:在展开式中,的来源有: 第一个因式中取出,则第二个因式必出,其系数为; 第一个因式中取出1,则第二个因式中必出,其系数为的系数应为:填。四、利用二项式定理的性质解题1 求中间项例9求(的展开式的中间项;解:展开式的中间项为 即:。 当为奇数时,的展开式的中间项是和;当为偶数时,的展开式的中间项是。2 求有理项例10求的展开式中有理项共有 项;解:当时,所对应的项是有理项。故展开式中有理项有4项。 当一个代数式各个字母的指数都是整数时,那么这个代数式是有理式; 当一个代数式中各个字母的指数不都是整数(或说是不可约分数)时,那么这个代数式是无理式。3 求系数最大或最小项(1) 特殊的系数最大或最小问题例11(00上海)在二项式的展开式中,系数最小的项的系数是 ;解:要使项的系数最小,则必为奇数,且使为最大,由此得,从而可知最小项的系数为(2) 一般的系数最大或最小问题 例12求展开式中系数最大的项; 解:记第项系数为,设第项系数最大,则有 又,那么有 即 解得,系数最大的项为第3项和第4项。(3) 系数绝对值最大的项例13在(的展开式中,系数绝对值最大项是 ;解:求系数绝对最大问题都可以将“”型转化为型来处理,故此答案为第4项,和第5项。五、利用“赋值法”求部分项系数,二项式系数和 例14若, 则的值为 ; 解: 令,有, 令,有 故原式= =在用“赋值法”求值时,要找准待求代数式与已知条件的联系,一般而言:特殊值在解题过程中考虑的比较多。 例15设, 则 ;分析:解题过程分两步走;第一步确定所给绝对值符号内的数的符号;第二步是用赋值法求的化简后的代数式的值。 解: = =0六、利用二项式定理求近似值 例16求的近似值,使误差小于; 分析:因为=,故可以用二项式定理展开计算。 解:= , 且第3项以后的绝对值都小于, 从第3项起,以后的项都可以忽略不计。 =小结:由,当的绝对值与1相比很小且很大时,等项的绝对值都很小,因此在精确度允许的范围内可以忽略不计,因此可以用近似计算公式:,在使用这个公式时,要注意按问题对精确度的要求,来确定对展开式中各项的取舍,若精确度要求较高,则可以使用更精确的公式:。 利用二项式定理求近似值在近几年的高考没有出现题目,但是按照新课标要求,对高中学生的计算能力是有一定的要求,其中比较重要的一个能力就是估算能力。所以有必要掌握利用二项式定理来求近似值。七、利用二项式定理证明整除问题 例17求证:能被7整除。 证明: = = =49P+() 又 =(7+1) = =7Q(Q) 能被7整除。在利用二项式定理处理整除问题时,要巧妙地将非标准的二项式问题化归到二项式定理的情境上来,变形要有一定的目的性,要凑 出相关的因数。

    注意事项

    本文(例说二项式定理的常见题型及解法 人教版.doc)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开