欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    高中物理带电粒子在磁场中的运动题20套(带答案)(共27页).doc

    • 资源ID:5733342       资源大小:1.61MB        全文页数:28页
    • 资源格式: DOC        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    高中物理带电粒子在磁场中的运动题20套(带答案)(共27页).doc

    精选优质文档-倾情为你奉上高中物理带电粒子在磁场中的运动题20套(带答案)一、带电粒子在磁场中的运动专项训练1如图所示,两条竖直长虚线所夹的区域被线段MN分为上、下两部分,上部分的电场方向竖直向上,下部分的电场方向竖直向下,两电场均为匀强电场且电场强度大小相同。挡板PQ垂直MN放置,挡板的中点置于N点。在挡板的右侧区域存在垂直纸面向外的匀强磁场。在左侧虚线上紧靠M的上方取点A,一比荷=5×105C/kg的带正电粒子,从A点以v0=2×103m/s的速度沿平行MN方向射入电场,该粒子恰好从P点离开电场,经过磁场的作用后恰好从Q点回到电场。已知MN、PQ的长度均为L=0.5m,不考虑重力对带电粒子的影响,不考虑相对论效应。(1)求电场强度E的大小;(2)求磁感应强度B的大小;(3)在左侧虚线上M点的下方取一点C,且CM=0.5m,带负电的粒子从C点沿平行MN方向射入电场,该带负电粒子与上述带正电粒子除电性相反外其他都相同。若两带电粒子经过磁场后同时分别运动到Q点和P点,求两带电粒子在A、C两点射入电场的时间差。【答案】(1) (2) (3) 【解析】【详解】(1)带正电的粒子在电场中做类平抛运动,有:L=v0t 解得E=16N/C(2)设带正电的粒子从P点射出电场时与虚线的夹角为,则: 可得=450粒子射入磁场时的速度大小为v=v0粒子在磁场中做匀速圆周运动: 由几何关系可知 解得B=1.6×10-2T (3)两带电粒子在电场中都做类平抛运动,运动时间相同;两带电粒子在磁场中都做匀速圆周运动,带正电的粒子转过的圆心角为,带负电的粒子转过的圆心角为;两带电粒子在AC两点进入电场的时间差就是两粒子在磁场中的时间差;若带电粒子能在匀强磁场中做完整的圆周运动,则其运动一周的时间;带正电的粒子在磁场中运动的时间为:;带负电的粒子在磁场中运动的时间为: 带电粒子在AC两点射入电场的时间差为2如图所示,在一直角坐标系xoy平面内有圆形区域,圆心在x轴负半轴上,P、Q是圆上的两点,坐标分别为P(-8L,0),Q(-3L,0)。y轴的左侧空间,在圆形区域外,有一匀强磁场,磁场方向垂直于xoy平面向外,磁感应强度的大小为B,y轴的右侧空间有一磁感应强度大小为2B的匀强磁场,方向垂直于xoy平面向外。现从P点沿与x轴正方向成37°角射出一质量为m、电荷量为q的带正电粒子,带电粒子沿水平方向进入第一象限,不计粒子的重力。求:(1)带电粒子的初速度;(2)粒子从P点射出到再次回到P点所用的时间。【答案】(1);(2)【解析】【详解】(1)带电粒子以初速度沿与轴正向成角方向射出,经过圆周C点进入磁场,做匀速圆周运动,经过轴左侧磁场后,从轴上D点垂直于轴射入右侧磁场,如图所示,由几何关系得: 在y轴左侧磁场中做匀速圆周运动,半径为, 解得: ;(2)由公式得:,解得: 由可知带电粒子经过y轴右侧磁场后从图中占垂直于y轴射放左侧磁场,由对称性,在y圆周点左侧磁场中做匀速圆周运动,经过圆周上的E点,沿直线打到P点,设带电粒子从P点运动到C点的时间为 带电粒子从C点到D点做匀速圆周运动,周期为,时间为 带电粒子从D做匀速圆周运动到点的周期为,所用时间为 从P点到再次回到P点所用的时间为 联立解得:。3欧洲大型强子对撞机是现在世界上最大、能量最高的粒子加速器,是一种将质子加速对撞的高能物理设备,其原理可简化如下:两束横截面积极小,长度为l-0质子束以初速度v0同时从左、右两侧入口射入加速电场,出来后经过相同的一段距离射入垂直纸面的圆形匀强磁场区域并被偏转,最后两质子束发生相碰。已知质子质量为m,电量为e;加速极板AB、AB间电压均为U0,且满足eU0=mv02。两磁场磁感应强度相同,半径均为R,圆心O、O在质子束的入射方向上,其连线与质子入射方向垂直且距离为H=R;整个装置处于真空中,忽略粒子间的相互作用及相对论效应。(1)试求质子束经过加速电场加速后(未进入磁场)的速度和磁场磁感应强度B;(2)如果某次实验时将磁场O的圆心往上移了,其余条件均不变,质子束能在OO 连线的某位置相碰,求质子束原来的长度l0应该满足的条件。【答案】(1) ;(2) 【解析】【详解】解:(1)对于单个质子进入加速电场后,则有:又:解得:;根据对称,两束质子会相遇于的中点P,粒子束由CO方向射入,根据几何关系可知必定沿OP方向射出,出射点为D,过C、D点作速度的垂线相交于K,则K,则K点即为轨迹的圆心,如图所示,并可知轨迹半径r=R根据洛伦磁力提供向心力有:可得磁场磁感应强度:(2)磁场O的圆心上移了,则两束质子的轨迹将不再对称,但是粒子在磁场中运达半径认为R,对于上方粒子,将不是想着圆心射入,而是从F点射入磁场,如图所示,E点是原来C点位置,连OF、OD,并作FK平行且等于OD,连KD,由于OD=OF=FK,故平行四边形ODKF为菱形,即KD=KF=R,故粒子束仍然会从D点射出,但方向并不沿OD方向,K为粒子束的圆心由于磁场上移了,故sinCOF=,COF=,DOF=FKD=对于下方的粒子,没有任何改变,故两束粒子若相遇,则只可能相遇在D点,下方粒子到达C后最先到达D点的粒子所需时间为而上方粒子最后一个到达E点的试卷比下方粒子中第一个达到C的时间滞后上方最后的一个粒子从E点到达D点所需时间为要使两质子束相碰,其运动时间满足联立解得4如图甲所示,在直角坐标系中的0xL区域内有沿y轴正方向的匀强电场,右侧有以点(2L,0)为圆心、半径为L的圆形区域,与x轴的交点分别为M、N,在xOy平面内,从电离室产生的质量为m、带电荷量为e的电子以几乎为零的初速度从P点飘入电势差为U的加速电场中,加速后经过右侧极板上的小孔Q点沿x轴正方向进入匀强电场,已知O、Q两点之间的距离为,飞出电场后从M点进入圆形区域,不考虑电子所受的重力。(1)求0xL区域内电场强度E的大小和电子从M点进入圆形区域时的速度vM;(2)若圆形区域内加一个垂直于纸面向外的匀强磁场,使电子穿出圆形区域时速度方向垂直于x轴,求所加磁场磁感应强度B的大小和电子在圆形区域内运动的时间t;(3)若在电子从M点进入磁场区域时,取t0,在圆形区域内加如图乙所示变化的磁场(以垂直于纸面向外为正方向),最后电子从N点飞出,速度方向与进入圆形磁场时方向相同,请写出磁场变化周期T满足的关系表达式。【答案】(1),设vM的方向与x轴的夹角为,45°;(2),;(3)T的表达式为(n1,2,3,)【解析】【详解】(1)在加速电场中,从P点到Q点由动能定理得:可得电子从Q点到M点,做类平抛运动,x轴方向做匀速直线运动,y轴方向做匀加速直线运动,由以上各式可得:电子运动至M点时:即:设vM的方向与x轴的夹角为,解得:45°。(2)如图甲所示,电子从M点到A点,做匀速圆周运动,因O2MO2A,O1MO1A,且O2AMO1,所以四边形MO1AO2为菱形,即RL由洛伦兹力提供向心力可得:即。(3)电子在磁场中运动最简单的情景如图乙所示,在磁场变化的半个周期内,粒子的偏转角为90°,根据几何知识,在磁场变化的半个周期内,电子在x轴方向上的位移恰好等于轨道半径,即因电子在磁场中的运动具有周期性,如图丙所示,电子到达N点且速度符合要求的空间条件为:(n1,2,3,)电子在磁场中做圆周运动的轨道半径解得:(n1,2,3,)电子在磁场变化的半个周期内恰好转过圆周,同时在MN间的运动时间是磁场变化周期的整数倍时,可使粒子到达N点且速度满足题设要求,应满足的时间条件是又则T的表达式为(n1,2,3,)。5在如图甲所示的直角坐标系中,两平行极板MN垂直于y轴,N板在x轴上且其左端与坐标原点O重合,极板长度l=0.08m,板间距离d=0.09m,两板间加上如图乙所示的周期性变化电压,两板间电场可看作匀强电场在y轴上(0,d/2)处有一粒子源,垂直于y轴连续不断向x轴正方向发射相同的带正电的粒子,粒子比荷为=5×107Ckg,速度为v0=8×105m/st=0时刻射入板间的粒子恰好经N板右边缘打在x轴上.不计粒子重力及粒子间的相互作用,求:(1)电压U0的大小;(2)若沿x轴水平放置一荧光屏,要使粒子全部打在荧光屏上,求荧光屏的最小长度;(3)若在第四象限加一个与x轴相切的圆形匀强磁场,半径为r=0.03m,切点A的坐标为(0.12m,0),磁场的磁感应强度大小B=,方向垂直于坐标平面向里求粒子出磁场后与x轴交点坐标的范围【答案】(1) (2) (3)【解析】【分析】【详解】(1)对于t=0时刻射入极板间的粒子: 解得:(2)时刻射出的粒子打在x轴上水平位移最大:所放荧光屏的最小长度即: (3)不同时刻射出极板的粒子沿垂直于极板方向的速度均为vy.速度偏转角的正切值均为: 即:所有的粒子射出极板时速度的大小和方向均相同.由分析得,如图所示,所有粒子在磁场中运动后发生磁聚焦由磁场中的一点B离开磁场. 由几何关系,恰好经N板右边缘的粒子经x轴后沿磁场圆半径方向射入磁场,一定沿磁场圆半径方向射出磁场;从x轴射出点的横坐标:.由几何关系,过A点的粒子经x轴后进入磁场由B点沿x轴正向运动.综上所述,粒子经过磁场后第二次打在x轴上的范围为:6如图,平面直角坐标系中,在,y0及y-L区域存在场强大小相同,方向相反均平行于y轴的匀强电场,在-Ly0区域存在方向垂直于xOy平面纸面向外的匀强磁场,一质量为m,电荷量为q的带正电粒子,经过y轴上的点P1(0,L)时的速率为v0,方向沿x轴正方向,然后经过x轴上的点P2(L,0)进入磁场在磁场中的运转半径R=L(不计粒子重力),求:(1)粒子到达P2点时的速度大小和方向;(2);(3)粒子第一次从磁场下边界穿出位置的横坐标;(4)粒子从P1点出发后做周期性运动的周期【答案】(1)v0,与x成53°角;(2);(3)2L;(4)【解析】【详解】(1)如图,粒子从P1到P2做类平抛运动,设到达P2时的y方向的速度为vy,由运动学规律知L=v0t1,L=t1可得t1=,vy=v0故粒子在P2的速度为v=v0设v与x成角,则tan=,即=53°;(2)粒子从P1到P2,根据动能定理知qEL=mv2-mv02可得E=粒子在磁场中做匀速圆周运动,根据qvB=m解得:B=解得:;(3)粒子在磁场中做圆周运动的圆心为O,在图中,过P2做v的垂线交y=-直线与Q点,可得:P2O=r故粒子在磁场中做圆周运动的圆心为O,因粒子在磁场中的轨迹所对圆心角=37°,故粒子将垂直于y=-L直线从M点穿出磁场,由几何关系知M的坐标x=L+(r-rcos37°)=2L;(4)粒子运动一个周期的轨迹如上图,粒子从P1到P2做类平抛运动:t1=在磁场中由P2到M动时间:t2=从M运动到N,a=则t3=则一个周期的时间T=2(t1+t2+t3)=7如图甲所示,在直角坐标系0xL区域内有沿y轴正方向的匀强电场,右侧有一个以点(3L,0)为圆心、半径为L的圆形区域,圆形区域与x轴的交点分别为M、N现有一质量为m、带电量为e的电子,从y轴上的A点以速度v0沿x轴正方向射入电场,飞出电场后从M点进入圆形区域,此时速度方向与x轴正方向的夹角为30°不考虑电子所受的重力(1)求电子进入圆形区域时的速度大小和匀强电场场强E的大小;(2)若在圆形区域内加一个垂直纸面向里的匀强磁场,使电子穿出圆形区域时速度方向垂直于x轴求所加磁场磁感应强度B的大小和电子刚穿出圆形区域时的位置坐标;(3)若在电子刚进入圆形区域时,在圆形区域内加上图乙所示变化的磁场(以垂直于纸面向外为磁场正方向),最后电子从N点处飞出,速度方向与进入磁场时的速度方向相同请写出磁感应强度B0的大小、磁场变化周期T各应满足的关系表达式【答案】(1) (2) (3) (n=1,2,3) (n=1,2,3)【解析】(1)电子在电场中作类平抛运动,射出电场时,速度分解图如图1中所示由速度关系可得: 解得: 由速度关系得:vy=v0tan=v0在竖直方向: 而水平方向: 解得: (2)根据题意作图如图1所示,电子做匀速圆周运动的半径R=L根据牛顿第二定律: 解得: 根据几何关系得电子穿出圆形区域时位置坐标为( ,-)(3)电子在在磁场中最简单的情景如图2所示在磁场变化的前三分之一个周期内,电子的偏转角为60°,设电子运动的轨道半径为r,运动的T0,粒子在x轴方向上的位移恰好等于r1;在磁场变化的后三分之二个周期内,因磁感应强度减半,电子运动周期T=2T0,故粒子的偏转角度仍为60°,电子运动的轨道半径变为2r,粒子在x轴方向上的位移恰好等于2r综合上述分析,则电子能到达N点且速度符合要求的空间条件是:3rn=2L(n=1,2,3)而: 解得: (n=1,2,3)应满足的时间条件为: (T0+T)=T而: 解得 (n=1,2,3)点睛:本题的靓点在于第三问,综合题目要求及带电粒子运动的半径和周期关系,则符合要求的粒子轨迹必定是粒子先在正B0中偏转60°,而后又在 B0中再次偏转60°,经过n次这样的循环后恰恰从N点穿出先从半径关系求出磁感应强度的大小,再从周期关系求出交变磁场周期的大小.8电子扩束装置由电子加速器、偏转电场和偏转磁场组成偏转电场的极板由相距为d的两块水平平行放置的导体板组成,如图甲所示大量电子由静止开始,经加速电场加速后,连续不断地沿平行板的方向从两板正中间OO射入偏转电场当两板不带电时,这些电子通过两板之间的时间为2t0;:当在两板间加最大值为U0、周期为2t0的电压(如图乙所示)时,所有电子均能从两板间通过,然后进入竖直宽度足够大的匀强酸场中,最后打在竖直放置的荧光屏上已知磁场的水平宽度为L,电子的质量为m、电荷量为e,其重力不计(1)求电子离开偏转电场时的位置到OO的最远位置和最近位置之间的距离(2)要使所有电子都能垂直打在荧光屏上,求匀强磁场的磁感应强度B求垂直打在荧光屏上的电子束的宽度y【答案】(1) (2)【解析】【详解】(1)由题意可知,从0、2t0、4t0、等时刻进入偏转电场的电子离开偏转电场时的位置到OO的距离最大,在这种情况下,电子的最大距离为:从t0、3t0、等时刻进入偏转电场的电子离开偏转电场时的位置到OO的距离最小,在这种情况下,电子的最小距离为:最远位置和最近位置之间的距离:,(2)设电子从偏转电场中射出时的偏向角为,由于电子要垂直打在荧光屏上,所以电子在磁场中运动半径应为:设电子离开偏转电场时的速度为v1,垂直偏转极板的速度为vy,则电子离开偏转电场时的偏向角为,式中又:解得:由于各个时刻从偏转电场中射出的电子的速度大小相等,方向相同,因此电子进入磁场后做圆周运动的半径也相同,都能垂直打在荧光屏上由第(1)问知电子离开偏转电场时的位置到OO的最大距离和最小距离的差值为y1,所以垂直打在荧光屏上的电子束的宽度为:9如图所示,直线y=x与y轴之间有垂直于xOy平面向外的匀强磁场,直线x=d与y=x间有沿y轴负方向的匀强电场,电场强度,另有一半径R=1.0m的圆形匀强磁场区域,磁感应强度,方向垂直坐标平面向外,该圆与直线x=d和x轴均相切,且与x轴相切于S点一带负电的粒子从S点沿y轴的正方形以速度进入圆形磁场区域,经过一段时间进入磁场区域,且第一次进入磁场时的速度方向与直线y=x垂直粒子速度大小,粒子的比荷为,粒子重力不计求:(1)粒子在匀强磁场中运动的半径r;(2)坐标d的值;(3)要使粒子无法运动到x轴的负半轴,则磁感应强度应满足的条件;(4)在(2)问的基础上,粒子从开始进入圆形磁场至第二次到达直线y=x上的最长时间(,结果保留两位有效数字).【答案】(1)r=1m (2) (3)或 (4)【解析】【详解】解:(1) 由带电粒子在匀强磁场中运动可得: 解得粒子运动的半径:(2) 粒子进入匀强电场以后,做类平抛运动,设粒子运动的水平位移为,竖直位移为水平方向:竖直方向:联立解得:,由图示几何关系得:解得: (3)若所加磁场的磁感应强度为,粒子恰好垂直打在轴上,粒子在磁场运动半径为由如图所示几何关系得:由带电粒子在匀强磁场中运动可得:解得:若所加磁场的磁感应强度为,粒子运动轨迹与轴相切,粒子在磁场中运动半径为由如图所示几何关系得:由带电粒子在匀强磁场中运动可得:解得综上,磁感应强度应满足的条件为或(4)设粒子在磁场中运动的时间为,在电场中运动的时间为,在磁场中运动的时间为,则有: 解得:10如图所示,虚线MN为匀强电场和匀强磁场的分界线,匀强电场场强大小为E方向竖直向下且与边界MN成=45°角,匀强磁场的磁感应强度为B,方向垂直纸面向外,在电场中有一点P,P点到边界MN的竖直距离为d。现将一质量为m、电荷量为q的带正电粒子从P处由静止释放(不计粒子所受重力,电场和磁场范围足够大)。求:(1)粒子第一次进入磁场时的速度大小;(2)粒子第一次出磁场处到第二次进磁场处的距离;(3)若粒子第一次进入磁场后的某时刻,磁感应强度大小突然变为,但方向不变,此后粒子恰好被束缚在该磁场中,则的最小值为多少?【答案】(1)(2)(3)【解析】【详解】(1)设粒子第一次进入磁场时的速度大小为v,由动能定理可得,解得(2)粒子在电场和磁场中的运动轨迹如图所示,粒子第一次出磁场到第二次进磁场,两点间距为由类平抛规律,由几何知识可得x=y,解得两点间的距离为,代入数据可得(3)由可得,即由题意可知,当粒子运动到F点处改变磁感应强度的大小时,粒子运动的半径又最大值,即最小,粒子的运动轨迹如图中的虚线圆所示。设此后粒子做圆周运动的轨迹半径为r,则有几何关系可知又因为,所以,代入数据可得11如图所示,真空中有一个半径r=0.5m的圆柱形匀强磁场区域,磁场的磁感应强度大小B=2×10-3T,方向垂直于纸面向外,x轴与圆形磁场相切于坐标系原点O,在x=0.5m和x=1.5m之间的区域内有一个方向沿y轴正方向的匀强电场区域,电场强E=1.5×103N/C,在x=1.5m处竖有一个与x轴垂直的足够长的荧光屏,一粒子源在O点沿纸平面向各个方向发射速率相同、比荷C/kg的带正电的粒子,若沿y轴正方向射入磁场的粒子恰能从磁场最右侧的A点沿x轴正方向垂直进入电场,不计粒子的重力及粒子间的相互作用和其他阻力求:(1)粒子源发射的粒子进入磁场时的速度大小;(2)沿y轴正方向射入磁场的粒子从射出到打到荧光屏上的时间(计算结果保留两位有效数字);(3)从O点处射出的粒子打在荧光屏上的纵坐标区域范围【答案】(1);(2);(3)【解析】【分析】(1)粒子在磁场中做匀速圆周运动,由几何关系确定半径,根据求解速度;(2)粒子在磁场中运动T/4,根据周期求解在磁场中的运动时间;在电场中做类平抛运动,根据平抛运动的规律求解在电场值的时间;(3)根据牛顿第二定律结合运动公式求解在电场中的侧移量,从而求解从O点处射出的粒子打在荧光屏上的纵坐标区域范围【详解】(1)由题意可知,粒子在磁场中的轨道半径为R=r=0.5m,由 进入电场时 带入数据解得v=1.0×106m/s(2)粒子在磁场中运动的时间 粒子从A点进入电场做类平抛运动,水平方向的速度为v,所以在电场中运动的时间 总时间 (3)沿x轴正方向射入电场的粒子,在电场中的加速度大小 在电场中侧移: 打在屏上的纵坐标为0.75;经磁场偏转后从坐标为(0,1)的点平行于x轴方向射入电场的粒子打在屏上的纵坐标为1.75;其他粒子也是沿x轴正方向平行的方向进入电场,进入电场后的轨迹都平行,故带电粒子打在荧光屏上 的纵坐标区域为0.75y1.75.12如图所示,平面直角坐标系xoy的第二、三象限内有方向沿y轴正向的匀强电场,第一、四象限内有圆形有界磁场,有界磁场的半径为当L,磁扬场的方向垂直于坐标平面向里,磁场边界与y轴相切于O点,在x轴上坐标为(L,0)的P点沿与x轴正向成=45°方向射出一个速度大小为v0的带电粒子,粒子的质量为m,电荷量为q,粒子经电场偏转垂直y轴射出电场,粒子进人磁场后经磁场偏转以沿y轴负方向的速度射出磁场,不计粒子的重力求(1)粒子从y轴上射出电场的位置坐标;(2)匀强电场电场强度大小及匀强磁场的磁感应强度大小;(3)粒子从P点射出到出磁场运动的时间为多少?【答案】(1)(0,L)(2) (3) 【解析】【分析】(1)粒子在电场中的运动为类平抛运动的逆过程,应用类平抛运动规律可以求出粒子出射位置坐标(2)应用牛顿第二定律求出粒子在电场中的加速度,应用位移公式求出电场强度;粒子在磁场中做圆周运动,应用牛顿第二定律可以求出磁感应强度(3)根据粒子运动过程,求出粒子在各阶段的运动时间,然后求出总的运动时间【详解】(1)粒子在电场中的运动为类平抛运动的逆运动,水平方向:L=v0cost1,竖直方向:y=v0sint1,解得:y=L,粒子从y轴上射出电场的位置为:(0,L);(2)粒子在电场中的加速度:a=,竖直分位移:y=at12,解得: ;粒子进入磁场后做匀速圆周运动,粒子以沿y轴负方向的速度射出磁场,粒子运动轨迹运动轨迹如图所示,由几何知识得:AC与竖直方向夹角为45°,AD=y=L,因此AAC刚好为有界磁场边界圆的直径,粒子在磁场中做圆周运动的轨道半径:r=L,粒子在磁场中做圆周运动,由牛顿第二定律得:qvB=m,其中,粒子的速度:v=v0cos,解得:;(3)粒子在电场中的运动时间:,粒子离开电场进入磁场前做匀速直线运动,位移:,粒子做运动直线运动的时间:,粒子在磁场中做圆周运动的时间:,粒子总的运动时间:t=t1+t2+t3=;【点睛】本题考查了带电粒子在磁场中运动的临界问题,粒子在磁场中的运动运用洛伦兹力提供向心力结合几何关系求解,类平抛运动运用运动的合成和分解牛顿第二定律结合运动学公式求解,解题关键是要作出临界的轨迹图,正确运用数学几何关系,分析好从电场射入磁场衔接点的速度大小和方向,运用粒子在磁场中转过的圆心角,结合周期公式,求解粒子在磁场中运动的时间13如图所示,在0xa、0y范围内有垂直于xy平面向外的匀强磁场,磁感应强度大小为B坐标原点O处有一个粒子源,在某时刻发射大量质量为m、电荷量为q的带正电粒子,它们的速度大小相同,速度方向均在xy平面内,与y轴正方向的夹角分布在0范围内己知粒子在磁场中做圆周运动的半径介于到a之间,从发射粒子到粒子全部离开磁场经历的时间恰好为粒子在磁场中做圆周运动周期的四分之一求最后离开磁场的粒子从粒子源射出时的:(1)速度的大小;(2)速度方向与y轴正方向夹角的正弦【答案】(1);(2)【解析】【分析】(1)根据题意,粒子运动时间最长时,其回旋的角度最大,画出运动轨迹,根据几何关系列出方程求解出轨道半径,再根据洛伦兹力提供向心力得出速度大小;(2)最后离开磁场的粒子,其运动时间最长,即为第一问中轨迹,故可以根据几何关系列出方程求解出其速度方向与y轴正方向夹角的正弦【详解】设粒子的发射速度为v,粒子做圆周运动的轨道半径为R,根据洛伦兹力提供向心力,得解得当Ra时,在磁场中运动的时间最长的粒子,其轨迹是圆心为C的圆弧,圆弧与磁场的边界相切,如图所示,设该粒子在磁场中运动的时间为t,依题意t=,回旋角度为OCA=,设最后离开磁场的粒子的发射方向与y轴正方向的夹角为,由几何关系得sin2+cos2=1解得故最后离开磁场的粒子从粒子源射出时的速度大小为(2)由第一问可知,最后离开磁场的粒子从粒子源射出时的速度方向与y轴正方向夹角的正弦为【点评】本题关键是画出运动时间最长的粒子的运动轨迹,然后根据几何关系得到轨道半径,再根据洛仑兹力提供向心力得到速度大小14通过测量质子在磁场中的运动轨迹和打到探测板上的计数率(即打到探测板上质子数与衰变产生总质子数N的比值),可研究中子()的衰变。中子衰变后转化成质子和电子,同时放出质量可视为零的反中微子。如图所示,位于P点的静止中子经衰变可形成一个质子源,该质子源在纸面内各向均匀地发射N个质子。在P点下方放置有长度以O为中点的探测板,P点离探测板的垂直距离为a。在探测板的上方存在方向垂直纸面向里,磁感应强度大小为B的匀强磁场。已知电子质量,中子质量,质子质量(c为光速,不考虑粒子之间的相互作用)。若质子的动量。(1)写出中子衰变的核反应式,求电子和反中微子的总动能(以为能量单位);(2)当,时,求计数率;(3)若取不同的值,可通过调节的大小获得与(2)问中同样的计数率,求与的关系并给出的范围。【答案】(1) (2) (3) 【解析】【分析】【详解】(1)核反应方程满足质量数和质子数守恒:核反应过程中:根据动量和动能关系:则总动能为:(2)质子运动半径:如图甲所示:打到探测板对应发射角度:可得质子计数率为:(3)在确保计数率为的情况下:即:如图乙所示:恰能打到探测板左端的条件为:即:15如图所示,足够大的平行挡板A1,A2竖直放置,间距为6L.两板间存在两个方向相反的匀强磁场区域和,以水平面yN为理想分界面区的磁感应强度为B0,方向垂直纸面向外,A1,A2上各有位置正对的小孔S1,S2,两孔与分界面yN的距离为L.质量为m,电量为q的粒子经宽度为d的匀强电场由静止加速后,沿水平方向从S1进入区,并直接偏转到yN上的P点,再进入区P点与A1板的距离是L的k倍不计重力,碰到挡板的粒子不予考虑(1)若k1,求匀强电场的电场强度E;(2)若2<k<3,且粒子沿水平方向从S2射出,求出粒子在磁场中的速度大小v与k的关系式和区的磁感应强度B与k的关系式【答案】(1) (2) , 【解析】试题分析:(1)粒子在电场中,由动能定理有qEd=mv2-0 粒子在区洛伦兹力提供向心力 qvB0当k=1时,由几何关系得 r=L 由解得E=(2)由于2<k<3时,由题意可知粒子在区只能发生一次偏转,由几何关系可知(r-L)2+(kL)2=r2解得r=由解得v=粒子在区洛伦兹力提供向心力 qvB由对称性及几何关系可知 解得r1=由解得 B考点:带电粒子在电场中的运动、带电粒子在匀强磁场中的运动专心-专注-专业

    注意事项

    本文(高中物理带电粒子在磁场中的运动题20套(带答案)(共27页).doc)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开