欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2021-2022学年北师大版九年级数学下册第三章-圆定向攻克练习题(名师精选).docx

    • 资源ID:57395882       资源大小:1.09MB        全文页数:36页
    • 资源格式: DOCX        下载积分:9金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要9金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2021-2022学年北师大版九年级数学下册第三章-圆定向攻克练习题(名师精选).docx

    北师大版九年级数学下册第三章 圆定向攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,O是正五边形ABCDE的外接圆,点P是的一点,则CPD的度数是()A30°B36°C45°D72°2、如图,已知中,则圆周角的度数是( )A50°B25°C100°D30°3、如图,的半径为,AB是的弦,于D,交于点C,且,弦AB的长为( )ABCD4、如图,PA,PB是O的切线,A,B是切点,点C为O上一点,若ACB70°,则P的度数为( ) A70°B50°C20°D40°5、已知O的半径为3cm,在平面内有一点A,且OA=6cm,则点A与O的位置关系是( )A点A在O内 ;B点A在O上;C点A在O外;D不能确定6、一个圆形人工湖如图所示,弦AB是湖上的一座桥,已知桥AB长100m,测得圆周角,则这个人工湖的直径AD为( )mABCD2007、如图,中,点是边上一动点,连接,以为直径的圆交于点若长为4,则线段长的最小值为( )ABCD8、小明设计了如图所示的树型图案,它是由4个正方形、8个等边三角形和5个扇形组成,其中正方形的边长、等边三角形的边长和扇形的半径均为3,则图中扇形的弧长总和为()A8BCD129、如图,中的半径为1,内接于若,则的长是( )ABCD10、如图,在中,连接AC,CD,则AC与CD的关系是( )ABCD无法比较第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在平面直角坐标系中,A(1,0),B(2,0),OCB=30°,D为线段BC的中点,线段AD交线段OC于点E,则AOE面积的最大值为_2、如图,在中,平分,平分,交于点,cm,cm,cm,则的面积为_cm23、如图,在RtABC中,ACB90°,O是ABC的内切圆,三个切点分别为D、E、F,若BF2,AF3,则ABC的面积是_4、在ABC中,AB = AC,以AB为直径的圆O交BC边于点D要使得圆O与AC边的交点E关于直线AD的对称点在线段OA上(不与端点重合),需满足的条件可以是 _ (写出所有正确答案的序号)BAC > 60°;45° < ABC < 60°;BD > AB;AB < DE < AB5、 “化圆为方”是古希腊尺规作图难题之一,即:求作一个正方形,使其面积等于给定圆的面积这个问题困扰了人类上千年,直到19世纪,该问题被证明仅用直尺和圆规是无法完成的如果借用一个圆形纸片,我们就可以化圆为方,方法如下:已知:O(纸片),其半径为求作:一个正方形,使其面积等于O的面积作法:如图1,取O的直径,作射线,过点作的垂线;如图2,以点为圆心,为半径画弧交直线于点;将纸片O沿着直线向右无滑动地滚动半周,使点,分别落在对应的,处;取的中点,以点为圆心,为半径画半圆,交射线于点;以为边作正方形正方形即为所求根据上述作图步骤,完成下列填空:(1)由可知,直线为O的切线,其依据是_(2)由可知,则_,_(用含的代数式表示)(3)连接,在Rt中,根据,可计算得_(用含的代数式表示)由此可得三、解答题(5小题,每小题10分,共计50分)1、如图,在平面直角坐标系中,O为坐标原点,抛物线yax2bxc(a0)过O、B、C三点,B、C坐标分别为(10,0)和(,),以OB为直径的A经过C点,直线l垂直x轴于B点(1)求直线BC的解析式;(2)求抛物线解析式及顶点坐标;(3)点M是A上一动点(不同于O,B),过点M作A的切线,交y轴于点E,交直线l于点F,设线段ME长为m,MF长为n,请猜想mn的值,并证明你的结论;(4)若点P从O出发,以每秒一个单位的速度向点B作直线运动,点Q同时从B出发,以相同速度向点C作直线运动,经过t(0t8)秒时恰好使BPQ为等腰三角形,请求出满足条件的t值2、如图,在中,点在边上,过三点的交于点,作直径,连结并延长交于点,连结,此时(1)求证:;(2)当为的中点,且时,求的直径长3、如图,AB是O的直径,连接DE、DB,延长AE交BD的延长线于点M,过点D作O的切线交AB的延长线于点C(1)求证:DEDM;(2)若OACD2,求阴影部分的面积4、已知:为的直径,四边形为的内接四边形,分别连接、,交于点,且(1)如图1,求证:;(2)如图2,延长交的延长线于点,交于点,连接,求证:;(3)如图3,在(2)的条件下,交于点,若,求的长5、已知AB是O的直径,点C在O上,D为弧BC的中点(1)如图,连接AC,AD,OD,求证:ODAC;(2)如图,过点D作DEAB交O于点E,直径EF交AC于点G,若G为AC的中点,O的半径为2,求AC的长-参考答案-一、单选题1、B【分析】连接OC,OD求出COD的度数,再根据圆周角定理即可解决问题;【详解】解:如图,连接OC,OD五边形ABCDE是正五边形,COD72°,CPDCOD36°,故选:B【点睛】本题主要考查了正多边形和圆、圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型2、B【分析】根据圆周角定理,即可求解【详解】解: , 故选:B【点睛】本题主要考查了圆周角定理,熟练掌握同圆(或等圆)中,同弧(或等弧)所对的圆周角等于圆心角的一半是解题的关键3、A【分析】如图所示,连接OA,由垂径定理得到AB=2AD,先求出,即可利用勾股定理求出,即可得到答案【详解】解:如图所示,连接OA,半径OCAB,AB=2AD,ODA=90°,故选:A【点睛】本题主要考查了垂径定理和勾股定理,熟知垂径定理是解题的关键4、D【分析】首先连接OA,OB,由PA,PB为O的切线,根据切线的性质,即可得OAP=OBP=90°,又由圆周角定理,可求得AOB的度数,继而可求得答案【详解】解:连接OA,OB,PA,PB为O的切线,OAP=OBP=90°,ACB=70°,AOB=2P=140°,P=360°-OAP-OBP-AOB=40°故选:D【点睛】此题考查了切线的性质与圆周角定理,注意掌握辅助线的作法和数形结合思想的应用5、C【分析】要确定点与圆的位置关系,主要确定点与圆心的距离与半径的大小关系;利用dr时,点在圆外;当d=r时,点在圆上;当dr时,点在圆内判断出即可【详解】解:O的半径为3cm,OA=6cm,dr,点A与O的位置关系是:点A在O外,故选:C【点睛】本题主要考查了对点与圆的位置关系的判断关键要记住若半径为r,点到圆心的距离为d,则有:当dr时,点在圆外;当d=r时,点在圆上,当dr时,点在圆内6、B【分析】连接BD,利用同弧所对圆周角相等以及直径所对的角为直角,求证为等腰直角三角形,最后利用勾股定理,求出AD即可【详解】解:连接BD,如下图所示:与所对的弧都是 所对的弦为直径AD, 又,为等腰直角三角形,在中,由勾股定理可得: 故选:B【点睛】本题主要是考查了圆周角定理以及直径所对的圆周角为直角和勾股定理,熟练运用圆周角定理以及直径所对的圆周角为直角,得到对应的直角三角形,再用勾股定理求解边长,是解决本题的主要思路7、D【分析】如图,连接 由为直径,证明在以的中点为圆心,为直径的上运动,连接 交于点 则此时最小,再利用锐角的正弦与勾股定理分别求解,即可得到答案.【详解】解:如图,连接 由为直径, 在以的中点为圆心,为直径的上运动,连接 交于点 则此时最小, , 故选D【点睛】本题考查的是勾股定理的应用,圆外一点与圆的最短距离的理解,锐角的正弦的应用,掌握“圆外一点与圆的最短距离求解线段的最小值”是解本题的关键.8、C【分析】如图(见解析),先分别求出扇形、和的圆心角的度数,再利用弧长公式即可得【详解】解:如图,扇形、和的圆心角的度数均为,扇形和的圆心角的度数均为,则图中扇形的弧长总和,故选:C【点睛】本题考查了求弧长,熟记弧长公式(,其中为弧长,为圆心角的度数,为扇形的半径)是解题关键9、B【分析】连接OA、OB,过点O作,由三角形内角和求出,由圆周角定理可得,由得是等腰三角形,即可知,根据三角函数已可求出AD,进而得出答案【详解】如图,连接OA、OB,过点O作,是等腰三角形,故选:B【点睛】本题主要考查了圆周角定理,解题的关键在于能够熟练掌握圆周角定理10、B【分析】连接AB,BC,根据得,再根据三角形三边关系可得结论【详解】解:连接AB,BC,如图,又 故选:B【点睛】本题考查了三角形三边关系,弧、弦的关系等知识,熟练掌握上述知识是解答本题的关键二、填空题1、【分析】过点作轴,交于点,根据中位线定理可得,设点到轴的距离为G,则AOE的边上的高,作的外接圆,则当点位于图中处时,最大,根据三角形面积公式计算即可【详解】解:过点作轴,交于点,A(1,0),B(2,0),D为线段BC的中点,轴,设点到轴的距离为,则AOE的边上的高,作的外接圆,则当点位于图中处时,最大,因为,为等边三角形,,,故答案为:.【点睛】本题考查了三角形中位线定理,圆周角定理,圆周角和圆心角的关系,等边三角形的判定与性质,解直角三角形等知识点,根据题意得出点的位置是解本题的关键2、1.5【分析】根据平分,平分,交于点,得出点是的内心,并画出的内切圆,再根据切线长定理列出方程组,求出的边上的高,进而求出其面积【详解】解:平分,平分,交于点,点是的内心如图,画出的内切圆,与、分别相切于点、,且连接,设,得方程组:解得:,的面积故答案为:1.5【点睛】此题主要考查三角形内切圆的应用,解题的关键是熟知三角形内切圆的性质,根据其性质列出方程组求解3、6【分析】根据题意利用切线的性质以及正方形的判定方法得出四边形OECD是正方形,进而利用勾股定理即可得出答案【详解】解:连接DO,EO,O是ABC的内切圆,切点分别为D,E,F,OEAC,ODBC,CD=CE,BD=BF=2,AF=AE=3又C=90°,四边形OECD是矩形,又EO=DO,矩形OECD是正方形,设EO=x,则EC=CD=x,在RtABC中BC2+AC2=AB2故(x+2)2+(x+3)2=52,解得:x=1,BC=3,AC=4,SABC=×3×4=6.故答案为:6【点睛】本题主要考查三角形内切圆与内心,根据题意得出四边形OECF是正方形以及运用方程思维和勾股定理进行分析是解题的关键4、【分析】将所给四个条件逐一判断即可得出结论【详解】解:在中, 当BAC > 60°时,若时,点E与点A重合,不符合题意,故不满足;当ABC时,点E与点A重合,不符合题意,当ABC时,点E与点O不关于AD对称,当时,点E关于直线AD的对称点在线段OA上,所以,当45° < ABC < 60°时,点E关于直线AD的对称点在线段OA上,故满足条件;当时,点E关于直线AD的对称点在线段OA上,故不满足条件;当AB < DE < AB时,点E关于直线AD的对称点在线段OA上,故满足条件;所以,要使得与AC边的交点E关于直线AD的对称点在线段OA上(不与端点重合),需满足的条件可以是45° < ABC < 60°或AB < DE < AB故答案为【点睛】本题考查了圆周角定理,正确判断出每种情况是解答本题的关键5、(1)经过半径外端且垂直于这条半径的直线是圆的切线;(2),;(3) 【分析】(1)根据切线的定义判断即可(2)由=AC+,计算即可;根据计算即可(3)根据勾股定理,得即为正方形的面积,比较与圆的面积的大小关机即可【详解】解:(1)O的直径,作射线,过点作的垂线,经过半径外端且垂直于这条半径的直线是圆的切线;故答案为:经过半径外端且垂直于这条半径的直线是圆的切线; (2)根据题意,得AC=r,=r,=AC+=r+r,=;,MA=-r=,故答案为:,; (3)如图,连接ME,根据勾股定理,得=; 故答案为:【点睛】本题考查了圆的切线的定义,勾股定理,圆的周长,正方形的面积和性质,熟练掌握圆的切线的定义,勾股定理,正方形的性质是解题的关键三、解答题1、(1)yx;(2)抛物线的解析式为:yx2x,顶点坐标为(5,);(3)mn25;(4)或5或【分析】(1)用待定系数法即可求得;(2)应用待定系数法以及顶点公式即可求得;(3)连接AE、AM、AF,则AMEF,证得RtAOERTAME,求得OAEMAE,同理证得BAFMAF,进而求得EAF90°,然后证明EMAAMF,得到,即可求得(4)分三种情况分别讨论,当PQBQ时,作QHPB,得到BHQBOP,求出直线BC解析式,得到HB:BQ4:5;即可求得,当PBQB时,则10tt即可求得,当PQPB时,作QHOB,根据勾股定理即可求得【详解】解:(1)设直线BC的解析式为ykx+b,直线BC经过B、C,解得:,直线BC的解析式为:yx;(2)抛物线yax2+bx+c(a0)过O、B、C三点,B、C坐标分别为(10,0)和(,),解得,抛物线的解析式为:2;5,2525,顶点坐标为(5,);(3)mn25;如图2,连接AE、AM、AF,则AMEF,在RtAOE与RtAME中 RtAOERtAME(HL),OAEMAE,同理可证BAFMAF,EAF90°,EAM+FAM=90°,EF为A切线,AMEF,EMA=FMA=90°,AEM+EAM=90°,AEM=MAF,EMAAMF,,AM2EMFM,AMOB5,MEm,MFn,mn25;(4)如图3有三种情况;当PQBQ时,作QHPB,垂足为H,则BHQBOP,设直线BC解析式为y=px+q,B、C坐标分别为(10,0)和(,),直线BC的解析式为,点P坐标为(0,-),BHQBOP,,HQ:BQ3:5,HB:BQ4:5;HB(10t),BQt,解得;,当PBQB时,则10tt,解得t5,当PQPB时,作QHOB,则PQPB10t,BQt,HP(10t),QH;PQ2PH2+QH2,(10t)2(10t)2+()2;解得综上所述,求出满足条件的t值有三个:或5或【点睛】本题考查了待定系数法求解析式,顶点坐标的求法,圆的切线的性质,数形结合分类讨论是本题的关键2、(1)证明见解析;(2)2【分析】(1)连接AF,根据圆周角定理得到,根据,推出BD垂直平分AF,于是得到AB=BF;(2)根据直角三角形的性质得到BF=BC,求得AB=BC,得到,求得,AB=,于是得到结论【详解】解:(1)如图,连接AFAE是O的直径BD是O的直径BD垂直平分AFABBF;(2) F为BC的中点 AF = CF =BFBCABBFABBC,在中, ,AC=3, ACABBF在中, ,AC=3 , O的直径长为2【点睛】本题考查了三角形的外接圆与外心,平行线的性质,勾股定理,圆周角定理,熟练掌握等腰三角形的判定和性质是解题的关键3、(1)见详解;(2)【分析】(1)连接AD,根据弦、弧之间的关系证明DB=DE,证明AMDABD,得到DM=BD,得到答案(2)连接OD,根据已知和切线的性质证明OCD为等腰直角三角形,得到DOC=45°,根据S阴影=SOCD-S扇OBD计算即可;【详解】解:(1)如图,连接AD,AB是O直径,ADB=ADM=90°,又,ED=BD,MAD=BAD,在AMD和ABD中,AMDABD,DM=BD,DE=DM;(2)如上图,连接OD,CD是O切线,ODCD,OA=CD=,OA=OD,OD=CD=,OCD为等腰直角三角形,DOC=C=45°,S阴影=SOCDS扇OBD=;【点睛】本题考查的是切线的性质、弦、弧之间的关系、扇形面积的计算,掌握切线的性质定理和扇形的面积公式是解题的关键,注意辅助线的作法4、(1)见解析;(2)见解析;(3)【分析】(1)根据在同圆中弦相等所对的圆周角相等证明DE/AC,再证明,即可证得结论;(2)根据三角形外角的性质可证得结论;(3)连接AB,由圆周角定理得,设,得,再证明,证明得,通过解直角三角形求出a的值和,再证明,根据相似三角形的性质可得出,根据可得结论【详解】解:(1)证明:DE/为的直径,即(2)证明:是DEG的外角, (3)连接AB,如图,BD是的直径在中,设,则,由勾股定理得: 和所对的弧都是 在和中 在中, 在中, 由勾股定理得, ,在中, BHM=BED=90°,HBM=EBD ,即解得,【点睛】本题考查了与圆有关的综合题,相似三角形的判定和性质以及解直角三角形等知识,解题的关键是学会添加常用辅助线,利用相似三角形解决问题,学会利用参数解决问题5、(1)证明见解析;(2)【分析】(1)连接,由为的中点,得,则,由等腰三角形的性质得,推出,即可得出结论;(2)由垂径定理得,由平行线的性质得,则是等腰直角三角形,易证是等腰直角三角形,得,再由,即可得出结果【详解】(1)证明:为的中点,;(2)解:为中点,由(1)得:,是等腰直角三角形,是等腰直角三角形,【点睛】本题考查了垂径定理、圆周角定理、等腰三角形的判定与性质、平行线的判定与性质、等腰直角三角形的判定与性质等知识;熟练掌握垂径定理和平行线的判定与性质是解题的关键

    注意事项

    本文(2021-2022学年北师大版九年级数学下册第三章-圆定向攻克练习题(名师精选).docx)为本站会员(可****)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开