欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2022年最新人教版八年级数学下册第十八章-平行四边形定向测试试卷(无超纲).docx

    • 资源ID:57395994       资源大小:528.16KB        全文页数:25页
    • 资源格式: DOCX        下载积分:9金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要9金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2022年最新人教版八年级数学下册第十八章-平行四边形定向测试试卷(无超纲).docx

    人教版八年级数学下册第十八章-平行四边形定向测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在菱形ABCD中,两条对角线AC=10,BD=24,则此菱形的边长为( )A14B25C26D132、如图所示,ABCD,ADBC,则图中的全等三角形共有( )A1对B2对C3对D4对3、如图,菱形ABCD的对角线AC、BD的长分别为6和8,O为AC、BD的交点,H为AB上的中点,则OH的长度为( )A3B4C2.5D54、如图,在中,AD平分,E是AD中点,若,则CE的长为( )ABCD5、如图,在矩形ABCD中,点E是BC的中点,连接AE,点F是AE的中点,连接DF,若AB9,AD,则四边形CDFE的面积是()ABCD546、的周长为32cm,AB:BC=3:5,则AB、BC的长分别为( )A20cm,12cmB10cm,6cmC6cm,10cmD12cm,20cm7、顺次连接对角线互相垂直的四边形的各边中点,所形成的新四边形是()A菱形B矩形C正方形D三角形8、如图,已知平行四边形ABCD的面积为8,E、F分别是BC、CD的中点,则AEF的面积为()A2B3C4D59、如图,点E是长方形ABCD的边CD上一点,将ADE沿着AE对折,点D恰好折叠到边BC上的F点,若AD10,AB8,那么AE长为()A5B12C5D1310、如图所示,正方形ABCD的面积为16,ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PDPE的和最小,则最小值为( )A2B3C4D6第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在四边形ABCD中,若AB/CD,BC_AD,则四边形ABCD为平行四边形2、如图,在正方形ABCD中,AB2,取AD的中点E,连接EB,延长DA至F,使EFEB,以线段AF为边作正方形AFGH,点H在线段AB上,则的值是 _3、如图,在正方形ABCD中,点O在内,则的度数为_4、如图,点E,F在正方形ABCD的对角线AC上,AC10,AECF3,则四边形BFDE的面积为 _5、若一个菱形的两条对角线的长为3和4,则菱形的面积为_三、解答题(5小题,每小题10分,共计50分)1、如图,在等腰三角形ABC中,ABBC,将等腰三角形ABC绕顶点B按逆时针方向旋转角a到的位置,AB与相交于点D,AC与分别交于点E,F(1)求证:BCF;(2)当Ca时,判定四边形的形状并说明理由2、如图,正方形ABCD中,点E在BC的延长线上,AE分别交DC,BD于F,G,点H为EF的中点求证:(1)DAGDCG;(2)GCCH3、如图,在中,过点作于点,点在边上,连接,(1)求证:四边形是矩形;(2)若,求证:平分4、如图,在中,AE平分,于点E,点F是BC的中点(1)如图1,BE的延长线与AC边相交于点D,求证:(2)如图2,中,求线段EF的长5、如图,平行四边形ABCD中,点E、F分别在CD、BC的延长线上,(1)求证:D是EC中点;(2)若,于点F,直接写出图中与CF相等的线段-参考答案-一、单选题1、D【解析】【分析】由菱形的性质和勾股定理即可求得AB的长【详解】解:四边形ABCD是菱形,AC=10,BD=24, AB=BC=CD=AD,ACBD,OB=OD=BD=12,OA=OC=AC=5,在RtABO中,AB=13,故选:D【点睛】本题考查了菱形的性质、勾股定理等知识,熟练掌握菱形的性质,由勾股定理求出AB=13是解题的关键2、D【解析】【分析】根据平行四边形的判定与性质,求解即可【详解】解:ABCD,ADBC四边形为平行四边形,、又,、图中的全等三角形共有4对故选:D【点睛】此题考查了平行四边形的判定与性质,全等三角形的判定与性质,解题的关键是掌握平行四边形的判定与性质3、C【解析】【分析】根据菱形的性质求得边长,进而根据三角形中位线定理求得的长度【详解】四边形ABCD是菱形,AOOC,OBOD,AOBO,又点H是AD中点,OH是DAB的中位线,在RtAOB中,AB5,则OHAB=2.5故选C【点睛】本题考查了菱形的性质,三角形中位线定理,求得的长是解题的关键4、B【解析】【分析】根据三角形内角和定理求出BAC,根据角平分线的定义DAB=B,求出AD,根据直角三角形的性质解答即可【详解】解:ACB=90°,B=30°,BAC=90°-30°=60°,AD平分BAC,DAB=BAC=30°,DAB=B,AD=BD=a,在RtACB中,E是AD中点,CE=AD=,故选: B【点睛】本题考查的是直角三角形的性质、角平分线的定义,掌握直角三角形斜边上的中线是斜边的一半是解题的关键5、C【解析】【分析】过点F作,分别交于M、N,由F是AE中点得,根据,计算即可得出答案【详解】如图,过点F作,分别交于M、N,四边形ABCD是矩形,点E是BC的中点,F是AE中点,故选:C【点睛】本题考查矩形的性质与三角形的面积公式,掌握是解题的关键6、C【解析】【分析】根据平行四边形的性质,可得AB=CD,BC=AD,然后设 ,可得到 ,即可求解【详解】解:四边形ABCD是平行四边形,AB=CD,BC=AD,AB:BC=3:5,可设 ,的周长为32cm, ,即 ,解得: , 故选:C【点睛】本题主要考查了平行四边形的性质,熟练掌握平行四边形的对边相等是解题的关键7、B【解析】【分析】先画出图形,再根据三角形中位线定理得到所得四边形的对边平行且相等,那么其必为平行四边形,然后根据邻边互相垂直得出四边形是矩形【详解】解:如图,、分别是、的中点,四边形是平行四边形,平行四边形是矩形,又与不一定相等,与不一定相等,矩形不一定是正方形,故选:B【点睛】本题考查了三角形中位线定理、矩形的判定等知识点,熟练掌握三角形中位线定理是解题关键8、B【解析】【分析】连接AC,由平行四边形的性质可得,再由E、F分别是BC,CD的中点,即可得到,由此求解即可【详解】解:如图所示,连接AC,四边形ABCD是平行四边形,ADBC,AD=BC,AB=CD,ABCD,E、F分别是BC,CD的中点,故选B【点睛】本题主要考查了平行四边形的性质,与三角形中线有关的面积问题,解题的关键在于能够熟练掌握平行四边形的性质9、C【解析】【分析】根据矩形的性质,折叠的性质,勾股定理即可得到结论【详解】解:四边形ABCD是矩形,将ADE沿着AE对折,点D恰好折叠到边BC上的F点,故选:C【点睛】本题考查了翻折变换,矩形的性质,勾股定理等知识,解题的关键是学会利用参数构建方程解决问题10、C【解析】【分析】先求得正方形的边长,依据等边三角形的定义可知BE=AB=4,连接BP,依据正方形的对称性可知PB=PD,则PE+PD=PE+BP由两点之间线段最短可知:当点B、P、E在一条直线上时,PE+PD有最小值,最小值为BE的长【详解】解:连接BP四边形ABCD为正方形,面积为16,正方形的边长为4ABE为等边三角形,BE=AB=4四边形ABCD为正方形,ABP与ADP关于AC对称BP=DPPE+PD=PE+BP由两点之间线段最短可知:当点B、P、E在一条直线上时,PE+PD有最小值,最小值=BE=4故选:C【点睛】本题考查的是等边三角形的性质、正方形的性质和轴对称最短路线问题,熟知“两点之间,线段最短”是解答此题的关键二、填空题1、【解析】【分析】根据平行四边形的判定:两组对边分别平行的四边形是平行四边形即可解决问题【详解】解:根据两组对边分别平行的四边形是平行四边形可知:AB/CD,BC/AD,四边形ABCD为平行四边形故答案为:/【点睛】本题考查了平行四边形的判定,熟练掌握平行四边形的判定方法是解题的关键2、【解析】【分析】设,由正方形的性质和勾股定理求出的长,可得的长,再求出的长,得出的长,进而可得结果【详解】解:设,四边形为正方形,点为的中点,四边形为正方形,故答案为:【点睛】本题考查了正方形的性质以及勾股定理,解题的关键是熟练掌握正方形的性质,由勾股定理求出的长3、135°【解析】【分析】先根据正方形的性质得到OAC+OAD=45°,再由OAC=ODA,推出ODA+OAD=45°,即可利用三角形内角和定理求解【详解】解:四边形ABCD是正方形,CAD=45°,OAC+OAD=45°,又OAC=ODA,ODA+OAD=45°,AOD=180°-ODA-OAD=135°,故答案为:135°【点睛】本题主要考查了正方形的性质,三角形内角和定理,解题的关键在于能够熟练掌握正方形的性质4、20【解析】【分析】连接BD,交AC于O,根据题意和正方形的性质可求得EF=4,ACBD,由即可求解【详解】解:如图,连接BD,交AC于O,四边形ABCD是正方形,AC10,ACBD10,ACBD,OAOCOBOD5,AECF3,EOFO2,EF=EO+FO=4, 故答案为:20【点睛】本题主要考查了正方形的性质,熟练掌握正方形的对角线相等且互相垂直平分是解题的关键5、6【解析】【分析】由题意直接由菱形的面积等于对角线乘积的一半进行计算即可【详解】解:菱形的面积.故答案为:6.【点睛】本题考查菱形的性质,熟练掌握菱形的面积等于对角线乘积的一半是解题的关键三、解答题1、(1)见解析;(2)菱形,见解析【分析】(1)根据等腰三角形的性质得到AB=BC,A=C,由旋转的性质得到A1B=AB=BC,A=A1=C,A1BD=CBC1,根据全等三角形的判定定理得到BCFBA1D;(2)由(1)可知=A=C=a,B=B=AB=BC通过证明FBC=可得 BC,利用EC=C=180°推出EC+=180° 得到BCE从而证明四边形为平行四边形再利用B=BC可证明四边形为菱形【详解】(1)证明:等腰三角形ABC旋转角a得到BD=FBC=a=A=C B=B=AB=BCBCF(ASA) (2)解:四边形为菱形理由:C=a由(1)可知=A=C=a B=B=AB=BC又 BD=FBC=a FBC=BC EC=C=180°EC+=180° BCE四边形为平行四边形又B=BC 四边形为菱形【点睛】本题考查了旋转的性质,全等三角形的判定和性质,等腰三角形的性质,正确的理解题意是解题的关键2、(1)见解析;(2)见解析【分析】(1)要证明,需把两角放到两三角形中,证明两三角形与全等得到,全等的方法是:由为正方形,得到与相等,与相等,再加上公共边,利用“”得到全等,利用全等三角形的对应角相等得证;(2)要证明与垂直,需证,即,方法是:由正方形的对边与平行,根据两直线平行,内错角相等得到与相等,由(1)得到的与相等,等量代换得到与相等,再由为直角三角形斜边上的中线,得到与相等都等于斜边的一半,根据“等边对等角”得到与相等,又等于,等量代换得到,即,得证【详解】证明:(1)为正方形,又,;(2)为正方形,又,为直角三角形斜边边的中点,又,即,【点睛】本题考查了正方形的性质,全等三角形的判定与性质,以及直角三角形的性质,以及直角三角形斜边上的中线等于斜边的一半,是一道证明题解题的关键是要求学生熟练掌握正方形的性质:四条边都相等,四个角相等都为直角,对角线互相垂直且平分,一条对角线平分一组对角3、(1)见解析;(2)见解析【分析】(1)先证明四边形是平行四边形,结合,从而可得结论;(2)先证明,再求解 证明证明从而可得结论.【详解】(1)证明:四边形是平行四边形,即 ,四边形是平行四边形,四边形是矩形;(2)四边形是平行四边形, 四边形是矩形; 在中,由勾股定理,得,即平分【点睛】本题考查的是勾股定理的应用,角平分线的定义,平行四边形的判定与性质,矩形的判定,证明四边形是平行四边形是解(1)的关键,证明是解(2)的关键.4、(1)见解析;(2)2【分析】(1)利用ASA定理证明AEBAED,得到BE=ED,AD=AB,根据三角形中位线定理解答;(2)分别延长BE、AC交于点H,仿照(1)的过程解答【详解】解:(1)证明:AE平分,BAE=DAE,AEB=AED=90°,在AEB和AED中,AEBAED(ASA)BE=ED,AD=AB,点F是BC的中点,BF=FC,EF是BCD的中位线,EF=CD=(AC-AD)=(AC-AB);(2)解:分别延长BE、AC交于点H,AE平分,BAE=DAE,AEB=AED=90°,在AEB和AEH中,AEBAEH(ASA)BE=EH,AH=AB=9,点F是BC的中点,BF=FC,EF是BCD的中位线,EF=CH=(AH-AC)=2【点睛】本题考查的是三角形中位线定理、全等三角形的判定和性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键5、(1)见祥解;(2)AB=DC=DE=DF=CF,证明见详解【分析】(1)根据四边形ABCD是平行四边形,得出ABCD即(ABED),AB=CD,根据,可证四边形ABDE为平行四边形,得出AB=DE即可;(2)根据EFBF,CD=ED,根据直角三角形斜边中线可得DF=CD=ED,再证DCF为等边三角形即可【详解】证明:(1)四边形ABCD是平行四边形,ABCD即(ABED),AB=CD,四边形ABDE为平行四边形,AB=DE,CD=ED,点D为CE中点;(2)结论为:AB=DC=DE=DF=CF,EFBF,CD=ED,DF=CD=ED,ABCD,ABC=60°,DCF=ABC=60°,DCF为等边三角形,CF=CD=DF=AB=ED【点睛】本题考查平行四边形的判定与性质,线段中点判定,直角三角形斜边中线性质,等边三角形判定与性质,掌握平行四边形的判定与性质,线段中点判定,直角三角形斜边中线性质,等边三角形判定与性质是解题关键

    注意事项

    本文(2022年最新人教版八年级数学下册第十八章-平行四边形定向测试试卷(无超纲).docx)为本站会员(可****)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开