2022年必考点解析沪教版(上海)七年级数学第二学期第十二章实数必考点解析试卷(精选含答案).docx
-
资源ID:57396088
资源大小:337.74KB
全文页数:20页
- 资源格式: DOCX
下载积分:8金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022年必考点解析沪教版(上海)七年级数学第二学期第十二章实数必考点解析试卷(精选含答案).docx
沪教版(上海)七年级数学第二学期第十二章实数必考点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、关于的叙述,错误的是()A是无理数B面积为8的正方形边长是C的立方根是2D在数轴上可以找到表示的点2、下列说法:-27的立方根是3;36的算数平方根是;的立方根是;的平方根是其中正确说法的个数是( )A1B2C3D43、规定一种新运算:,如则的值是( )ABC6D84、下列等式正确的是( )ABCD5、64的立方根为( )A2B4C8D26、下列各组数中相等的是( )A和3.14B25%和C和0.625D13.2%和1.327、在下列四个选项中,数值最接近的是( )A2B3C4D58、下列各数是无理数的是( )AB3.33CD9、计算2130( )AB1C1D10、若 ,则 ( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、计算:_2、已知,则|x3|x1|_3、引入新数i,新数i满足分配律、结合律、交换律,已知,则_4、给定二元数对(p,q),其中或1,或1三种转换器A,B,C对(p,q)的转换规则如下:(1)在图1所示的“ABC”组合转换器中,若输入,则输出结果为_;(2)在图2所示的“C”组合转换器中,若当输入和时,输出结果均为0,则该组合转换器为“_C_”(写出一种组合即可)5、立方等于-27的数是_.三、解答题(10小题,每小题5分,共计50分)1、直接写出结果:(1)_;(2)_;(3)的立方根_;(4)若x2(7)2,则x_2、解方程,求x的值(1) (2)3、计算:4、如图,数轴的原点为O,点A、B、C是数轴上的三点,点B对应的数是1,AB6,BC2,动点P、Q同时分别从A、C出发,分别以每秒3个单位长度和每秒1个单位长度的速度沿数轴正方向运动设运动时间为t秒(t0)(1)点A表示的数为 ,点C表示的数为 ;(2)求t为何值时,点P与点Q能够重合?(3)是否存在某一时刻t,使点O平分线段PQ且点P与点Q在原点的异侧?若存在,请求出满足条件的t值若不存在,请说明理由5、求下列各式中的值:(1); (2)6、计算 7、(1)计算: ;(2)求的值: 8、现有两种给你钱的方法:第一种方法是每天给你1元,一直给你10年;第二种方法是第一天给你1分钱,第2天给你2分钱,第3天给你4分钱,第4天给你8分钱,第5天给你16分钱,以此类推,给你20天哪一种方法得到的钱数多?请说明理由(1年按365天计算)9、计算题:(1);(2)10、如图将边长为2cm的小正方形与边长为xcm的大正方形放在一起(1)用xcm表示图中空白部分的面积;(2)当x5cm时空白部分面积为多少?(3)如果大正方形的面积恰好比小正方形的面积大165cm2,那么大正方形的边长应该是多少?-参考答案-一、单选题1、C【分析】根据实数的分类,平方根和立方根的性质,实数与数轴的关系逐项判断即可求解【详解】解:A、是无理数,该说法正确,故本选项不符合题意;B、,所以面积为8的正方形边长是,该说法正确,故本选项不符合题意;C、8的立方根是2,该说法错误,故本选项符合题意;D、因为数轴上的点与实数是一一对应的,所以在数轴上可以找到表示的点,该说法正确,故本选项不符合题意;故选:C【点睛】本题主要考查了实数的分类,平方根和立方根的性质,实数与数轴的关系,熟练掌握实数的分类,平方根和立方根的性质,实数与数轴的关系是解题的关键2、A【分析】分别进行立方根运算、算术平方根运算、平方根运算逐个判断即可【详解】解:27的立方根是3,错误;36的算数平方根是6,错误;的立方根是,正确;的平方根是,错误,正确的说法有1个,故选:A【点睛】本题考查立方根、算术平方根、平方根,熟练掌握算术平方根和平方根的区别是解答的关键3、C【分析】根据新定义计算法则把转化为常规下运算得出,然后按有理数运算法则计算即可【详解】解:,故选择C【点睛】本题考查新定义运算,掌握新定义运算的要点,含乘方的有理数混合运算是解题关键4、C【分析】根据算术平方根的定义和性质,立方根的定义逐项分析判断即可【详解】A. ,故该选项不正确,不符合题意;B. 无意义,故该选项不正确,不符合题意; C. ,故该选项正确,符合题意;D. ,故该选项不正确,不符合题意;故选C【点睛】本题考查了平方根和立方根的概念和求法,理解、记忆平方根和立方根的概念是解题关键平方根:如果x2=a,则x叫做a的平方根,记作“±”(a称为被开方数) 其中属于非负数的平方根称之为算术平方根;立方根:如果x3=a,则x叫做a的立方根,记作“”(a称为被开方数)5、B【分析】根据立方根的定义进行计算即可【详解】解:43=64,实数64的立方根是,故选:B【点睛】本题考查立方根,理解立方根的定义是正确解答的关键6、B【分析】是一个无限不循环小数,约等于3.142,3.1423.14,即3.14;1÷40.25,把0.25的小数点向右移动两位添上百分号就是25%;即25%;3÷80.375,0.3750.625,即0.625;把13.2%小数点向左移动两位去掉百分号就是0.132,0.1321.32,即13.2%1.32【详解】解:A 、3.142,3.1423.14,即3.14;B 、1÷40.2525%;C 、3÷80.375,0.3750.625,即0.625;D 、13.2%0.132,0.1321.32,即13.2%1.32故选:B【点睛】此题主要是考查小数、分数、百分数的互化及圆周率的限值小数、分数、百分数、无限小数(循环小数)的大小比较,通常都化成保留一定位数的小数,再根据小数的大小比较方法进行比较,这样可以省去通分的麻烦7、A【分析】根据无理数的估算先判断,进而根据,进而可以判断,即可求得答案【详解】解:,即更接近2故选A【点睛】本题考查了无理数的估算,掌握无理数的估算是解题的关键8、C【分析】无理数是指无限不循环小数,由此概念以及立方根的定义分析即可【详解】解:,是有理数,3.33和是有理数,是无理数,故选:C【点睛】本题考查求一个数的立方根,以及无理数的识别,掌握立方根的定义以及无理数的基本定义是解题关键9、D【分析】利用负整数指数幂和零指数幂的意义进行化简计算即可【详解】解:原式1故选:D【点睛】本题主要考查了实数的计算,负整数指数幂的意义,零指数幂的意义,利用实数运算法则进行正确的化简计算是解题的关键10、B【分析】先利用的值,求出,再利用负整数指数幂的运算法则,得到的值【详解】解:,或(舍去),故选:B【点睛】本题主要是考查了开二次根式以及负整数指数幂的运算法则,熟练掌握负整数指数幂的运算法则:,是解决本题的关键二、填空题1、-5【分析】由题意直接根据立方根的性质即可进行分析求值.【详解】解:.故答案为:.【点睛】本题考查立方根求值,熟练掌握立方根的性质是解题的关键.2、2【分析】得出x-30,x-1>0,再利用绝对值的代数意义去括号合并即可得到结果【详解】解:,12,23,x-30,x-1>0,|x3|x-1|=3-x+(x-1)=3-x+x-1=2故答案为:2【点睛】本题考查了整式的加减运算,涉及的知识有:无理数的估算,绝对值的代数意义,数轴,去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键3、2【分析】先根据平方差公式化简,再把代入计算即可【详解】解:故答案为2【点睛】本题考查了新定义运算及平方差公式,熟练掌握平方差公式是解答本题的关键.4、1 A A 【分析】(1)利用转换器C的规则即可求出答案(2)利用转换器A、B、C的规则,写出一组即可【详解】(1)解:利用转换器C的规则可得:输出结果为1(2)解:当输入时,若对应A,此时经过A、C输出结果为(1,0),对应A,输出结果恰好为0当输入时,若对应A,此时经过A、C输出结果为(0,1),对应A,输出结果恰好为0故答案为:1;A;A【点睛】本题主要是新定义题目,利用题目所给规则,进行分析判断,即可解答出该题目5、-3【分析】根据立方根的定义解答即可【详解】解:(-3)3=-27,立方等于-27的数是-3故答案为-3【点睛】本题考查了有理数的乘方,熟悉乘方和立方根的定义是解题的关键三、解答题1、(1)8;(2)0;(3)2;(4)【分析】(1)根据算术平方根的计算法则求解即可;(2)根据算术平方根的计算法则求解即可;(3)根据立方根的求解方法求解即可;(4)根据求平方根的方法解方程即可【详解】解:(1),故答案为:8;(2),故答案为:0;(3),的立方根是2,故答案为:2;(4)x2(7)2,x249,x=±7故答案为:±7【点睛】本题主要考查了实数的运算,立方根,算术平方根,利用平方根解方程等等,熟知相关计算法则是解题的关键2、(1)或 ;(2)x【分析】(1)方程变形后,利用平方根定义开方即可求出解;(2)把x1可做一个整体求出其立方根,进而求出x的值【详解】解:(1), ,或 ;(2)8(x1)327,(x1)3,x1,x【点睛】本题考查了平方根、立方根熟练掌握平方根、立方根的定义和性质是解题的关键3、【分析】分别计算乘方运算,零次幂,算术平方根,负整数指数幂,再合并即可.【详解】解:原式【点睛】本题考查的是零次幂的含义,求解一个数的算术平方根,负整数指数幂的含义,掌握以上基础运算是解题的关键.4、(1)-5,3;(2)t=4;(3)存在,t=,理由见解析【分析】(1)由点B对应的数及线段AB、BC的长,可找出点A、C对应的数;(2)根据点P、Q的出发点、速度及方向,由追击的等量关系列出含t的方程,解方程即可;(3)由题意得OP=OQ,据此列一元一次方程,解此方程即可【详解】解:(1)1-6=-5,1+2=3即点A表示的数为 -5,点C表示的数为3,故答案为:-5,3;(2)若点P与点Q能够重合,则AP-CQ=AC,即3t-t=82t=8t=4答:当t=4时,点P与点Q能够重合(3)存在,理由如下:若点O为PQ中点,且点P与点Q在原点的异侧,即OP=OQ5-3t=3+t4t=2t=答:当t=时,点O平分线段PQ且点P与点Q在原点的异侧【点睛】本题考查一元一次方程的应用、数轴等知识,难度一般,是重要考点,掌握相关知识是解题关键5、(1);(2)【分析】(1)把原方程化为,再利用立方根的含义解方程即可;(2)直接利用平方根的含义把原方程化为或,再解两个一次方程即可.【详解】解:(1) 解得: (2)或 解得:【点睛】本题考查的是利用立方根的含义与平方根的含义解方程,掌握“立方根与平方根的含义”是解本题的关键.6、【分析】直接根据有理数的乘方,算术平方根,立方根以及绝对值的性质化简各项,再进行加减运算得出答案【详解】解:=【点睛】本题主要考查了实数的运算,正确化简各数是解题的关键7、(1)0;(2)【分析】(1)根据立方根和平方根的性质化简,再计算加法,即可求解;(2)先将系数化为1,再利用平方根的性质,即可求解【详解】解:(1) 原式2+2; (2) 解得: 【点睛】本题主要考查了立方根和平方根的性质,熟练掌握 是解题的关键8、第二种,理由见解析【分析】根据题意,先计算第一种方法给的钱数,即每天的钱数乘以天数;再计算第二种方法给的钱数,但要总结规律可得第n天可得2n1元钱即可得总数,然后比较大小即可知哪种方案得到的多【详解】解:第一种方法:1×10×365=3650元第二种方法:1+2+22+23+24+219=2201=1048575分=10485.75元10485.753650第二种方法得到的钱多【点睛】本题考查了数字的规律,以及有理数的混合运算,涉及到比较数的大小考查了找数字的规律的问题,做此类问题,需要认真审题,找出规律,从特殊到一般,归纳总结规律,是解决此类问题的关键所在9、(1)(2)【分析】(1)先用同底数幂、幂的乘方、积的乘方运算,然后再合并即可;(2)先运用算术平方根、负整数次幂、绝对值、零次幂的知识化简各数,然后再计算即可(1)解:原式=(2)解:原式=【点睛】本题主要考查了整式的运算、实数的运算等知识点,灵活运用相关运算法则成为解答本题的关键10、(1);(2);(3)13cm【分析】(1)空白部分面积=小正方形的面积+大正方形的面积-阴影部分两个三角形的面积,据此可得代数式;(2)将x=5代入计算可得;(3)根据题意列出方程求解即可【详解】解:(1)空白部分面积为;(2)当x5时,空白部分面积为(3)根据题意得,解得x13或-13(舍去),所以,大正方形的边长为13cm【点睛】此题考查列代数式问题,解题的关键是根据图形得出计算空白部分面积的关系式