2021-2022学年北师大版八年级数学下册第四章因式分解专项练习试题(含答案及详细解析).docx
-
资源ID:57399273
资源大小:185.73KB
全文页数:16页
- 资源格式: DOCX
下载积分:8金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2021-2022学年北师大版八年级数学下册第四章因式分解专项练习试题(含答案及详细解析).docx
北师大版八年级数学下册第四章因式分解专项练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列各式中,从左到右的变形是因式分解的是( )ABCD2、在实数范围内因式分解2x23xyy2,下列四个答案中正确的是()A(xy)(xy)B(x+y)(x+y)C2(xy)(xy)D2(x+y)(x+y)3、下列各组式子中,没有公因式的一组是()A2xy与xB(ab)2与abCcd与2(dc)Dxy与x+y4、下列从左边到右边的变形中,是因式分解的是( )ABCD5、把多项式a29a分解因式,结果正确的是()Aa(a+3)(a3)Ba(a9)C(a3)2D(a+3)(a3)6、下列多项式中,不能用公式法因式分解的是( )ABCD7、若一个等腰三角形的两边m,n满足9m2n213,3mn13,则该等腰三角形的周长为( )A11B13C16D11或168、运用平方差公式对整式进行因式分解时,公式中的可以是( )ABCD9、下列因式分解正确的是()ABCD10、下列因式分解正确的是( )Ax24x4x(x4)4B96(mn)(nm)2(3mn)2C4x22x1(2x1)2Dx4y4(x2y2)(x2y2)第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、将4a28ab+4b2因式分解后的结果为_2、分解因式:_3、把多项式分解因式结果是_4、若实数x满足x22x10,则2x32x26x2020_5、因式分解:ax22axa_三、解答题(5小题,每小题10分,共计50分)1、先阅读下列材料:我们已经学过将一个多项式分解因式的方法有提公因式法和运用公式法,其实分解因式的方法还有分组分解法、拆项法、十字相乘法等等拆项法:将一个多项式的某一项拆成两项后,可提公因式或运用公式继续分解的方法如:x22x3x22x14(x1)222(x12)(x12)(x3)(x1)请你仿照以上方法,探索并解决下列问题:(1)分解因式:x26x7;(2)分解因式:a24ab5b22、我们知道,任意一个正整数c都可以进行这样的分解:c=a×b(b是正整数,且ab),在c的所有这些分解中,如果a,b两因数之差的绝对值最小,我们就称a×b是c的最优分解并规定:M(c)=,例如9可以分解成1×9,3×3,因为9-13-3,所以3×3是9的最优分解,所以M(9)=1(1)求M(8);M(24);M(c+1)2的值;(2)如果一个两位正整数d(d=10x+y,x,y都是自然数,且1xy9),交换其个位上的数与十位上的数得到的新数加上原来的两位正整数所得的和为66,那么我们称这个数为“吉祥数”,求所有“吉祥数”中M(d)的最大值3、分解因式:(1);(2)4、分解因式:5、(1)计算:(12a3-6a2+3a)÷3a (2)因式分解:-参考答案-一、单选题1、C【分析】根据因式分解的定义判断即可.【详解】解:因式分解即把一个多项式化成几个整式的积的形式.A. ,不是几个整式的积的形式,A选项不是因式分解;B. ,不是几个整式的积的形式,B选项不是因式分解C. ,符合因式分解的定义,C是因式分解. D. ,不是几个整式的积的形式,D选项不是因式分解;故选C【点睛】本题考查了因式分解的定义,把一个多项式化成几个整式的积的形式的变形叫因式分解,等号的左边是一个多项式,右边是几个整式的积,正确理解因式分解的定义是解题的关键.2、C【分析】首先解关于x的方程,进而分解因式得出即可【详解】解:当2x23xyy20时,解得:x1y,x2y,则2x23xyy22(xy)(xy)故选:C【点睛】此题主要考查了实数范围内分解因式,正确解方程是解题关键3、D【分析】根据公因式是各项中的公共因式逐项判断即可【详解】解:A、2xy与x有公因式x,不符合题意;B、(ab)2与ab有公因式ab,不符合题意;C、cd与2(dc)有公因式cd,不符合题意;D、xy与x+y没有公因式,符合题意,故选:D【点睛】本题考查公因式,熟练掌握确定公因式的方法是解答的关键4、A【分析】根据因式分解的定义逐个判断即可【详解】解:A是因式分解,故本选项符合题意;B等式的左边不是多项式,所以不是因式分解,故本选项不合题意; C等式的右边不是几个整式的积的形式,所以不是因式分解,故本选项不合题意;D等式的右边不是几个整式的积的形式,不是因式分解,故本选项不符合题意;故选:A【点睛】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解5、B【分析】用提公因式法,提取公因式即可求解【详解】解:a29aa(a9)故选:B【点睛】本题考查了因式分解,用到了提公因式法和公式法,因式分解一般是先考虑提公因式法,再考虑公式法,注意的是,因式分解要进行到再也不能分解为止6、D【分析】利用完全平方公式把,分解因式,利用平方差公式把,从而可得答案.【详解】解:故A不符合题意;故B不符合题意;故C不符合题意;,不能用公式法分解因式,故D符合题意;故选D【点睛】本题考查的是利用平方差公式与完全平方公式分解因式,熟悉平方差公式与完全平方公式的特点是解题的关键.7、C【分析】根据题意和通过因式分解得出m和n的两个关系式求出m、n,再分情况讨论求解即可【详解】解:9m2-n2=-13,3m+n=13,(3m+n)(3m-n)=-13,n-3m=1,由得:m=2,n=7;若2是腰长时,三角形的三边分别为2、2、7,2+27,不能组成三角形,若2是底边时,三角形的三边分别为2、7、7,能组成三角形,周长=7+7+2=16综上所述,等腰三角形的周长是16故选:C【点睛】本题考查了等腰三角形的定义、因式分解的应用、三角形的三边关系,难点在于要分情况讨论8、C【分析】运用平方差公式分解因式,后确定a值即可【详解】=,a是2mn,故选C【点睛】本题考查了平方差公式因式分解,熟练掌握平方差公式是解题的关键9、A【分析】根据因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做因式分解,进行判断即可【详解】解:A、,选项说法正确,符合题意;B、,选项说法错误,不符合题意;C、是整式乘法运算,不是因式分解,选项说法错误,不符合题意;D、,选项说法错误,不符合题意;故选A【点睛】本题考查了因式分解,解题的关键是掌握因式分解的定义以及分解的正确性10、B【分析】利用公式法进行因式分解判断即可【详解】解:A、,故A错误,B、96(mn)(nm)2(3mn)2,故B正确,C、4x22x1,无法因式分解,故C错误,D、,因式分解不彻底,故D错误,故选:B【点睛】本题主要是考查了利用公式法进行因式分解,一定要熟练掌握完全平方公式和平方差公式的形式,另外因式分解一定要彻底二、填空题1、【分析】先提取公因式4,再利用完全平方式即可求出结果【详解】故答案为:【点睛】本题考查因式分解掌握提公因式和公式法进行因式分解是解答本题的关键2、【分析】首先提取公因式,再根据平方差公式计算,即可得到答案【详解】故答案为:【点睛】本题考查了因式分解的知识;解题的关键是熟练掌握平方差公式的性质,从而完成求解3、【分析】利用平方差公式分解得到结果,即可做出判断【详解】解:= 故答案为:【点睛】此题考查了因式分解-运用公式法,熟练掌握平方差公式是解本题的关键4、2022【分析】先根据得到,再将要求的式子逐步变形,将整体代入降次,最后可化简求得答案【详解】解:,故答案为:2022【点睛】本题考查了因式分解在代数式化简求值中的应用,将已知条件恰当变形并将要求的式子进行因式分解,是解题的关键5、【分析】提取公因式后,用完全平方公式因式分解即可【详解】原式=故答案为:【点睛】本题考查了因式分解,因式分解是初中数学的重要内容之一选择正确的分解方法是学好因式分解的关键因式分解的题目多以填空题或选择题的形式考查提公因式法和公式法的综合运用因式分解的基本思路是:一个多项式如有公因式首先提取公因式,然后再用公式法进行因式分解如果剩余的是两项,考虑使用平方差公式,如果剩余的是三项,则考虑使用完全平方公式同时,因式分解要彻底,要分解到不能分解为止因式分解常见技巧:局部不符看整体,整体不符局部,实在不行看变形三、解答题1、(1)(x+1)(x7);(2)(a+5b)( ab)【分析】(1)仿照例题方法分解因式即可;(2)仿照例题方法分解因式即可;【详解】解:(1)x26x7= x26x+916=(x3)242=(x3+4)(x34)=(x+1)(x7);(2)a24ab5b2= a24ab+4b29b2=(a+2b)2(3b)2=(a+2b +3b)(a+2b3b)=(a+5b)( ab)【点睛】本题考查因式分解、完全平方公式、平方差公式,熟记公式,理解题中的分解因式方法并能灵活运用是解答的关键2、(1);1;(2);【分析】(1)根据c=a×b中,c的所有这些分解中,如果a,b两因数之差的绝对值最小,就称a×b是c的最优分解,因此M(8)=,M(24)=,M(c+1)2= ;(2)设这个两位正整数d交换其个位上的数与十位上的数得到的新数为d',则d+d'=(10x+y)+(10y+x)=11x+11y=11(x+y)=66,由于x,y都是自然数,且1xy9,所以满足条件的“吉祥数”有15、24、33所以M(15)=,M(24)=,M(33)=,所以所有“吉祥数”中M(d)的最大值为【详解】解:(1)由题意得,M(8)=;M(24)=;M(c+1)2=;(2)设这个两位正整数d交换其个位上的数与十位上的数得到的新数为d',则d+d'=(10x+y)+(10y+x)=11x+11y=11(x+y)=66,x,y都是自然数,且1xy9,满足条件的“吉祥数”有15、24、33M(15)=,M(24)=,M(33)=,所有“吉祥数”中M(d)的最大值为【点睛】本题考查了分解因式的应用,根据示例进行分解因式是解题的关键3、(1);(2)【分析】(1)先提取公因式,然后再根据平方差公式进行因式分解即可;(2)先利用完全平方公式展开,然后合并同类项,进而再因式分解即可【详解】解:(1)原式=;(2)原式=【点睛】本题主要考查因式分解,熟练掌握因式分解的方法是解题的关键4、【分析】先提取公因式,然后利用十字相乘和平方差公式分解因式即可【详解】解:原式=【点睛】本题主要考查了因式分解,解题的关键在于能够熟练掌握因式分解的方法5、(1)4a2-2a+1;(2)2a(a-2)2【分析】(1)根据多项式除以单项式的法则进行计算即可;(2)先提公因式,再根据完全平方公式进行因式分解即可【详解】解(1)(12a3-6a2+3a)÷3a=4a2-2a+1;(2)=2a(a2-4a+4)=2a(a-2)2【点睛】本题考查了整式的除法,以及因式分解法,掌握运算法则和完全平方公式是解题的关键