2022年必考点解析北师大版八年级数学下册第三章图形的平移与旋转专题测评试题(精选).docx
-
资源ID:57431583
资源大小:734.38KB
全文页数:23页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022年必考点解析北师大版八年级数学下册第三章图形的平移与旋转专题测评试题(精选).docx
八年级数学下册第三章图形的平移与旋转专题测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列图形中,既是轴对称图形,又是中心对称图形的是( )ABCD2、如图,的顶点坐标为,若将绕点按顺时针方向旋转90°,再向左平移2个单位长度,得到,则点的对应点的坐标是( )ABCD3、下列图形中,是中心对称图形的是( )ABCD4、下列四个图案中,是中心对称图形的是()ABCD5、下列图形中,是中心对称图形的是( )ABCD6、下列图形中,既是中心对称图形又是轴对称图形的有几个()A1个B2个C3个D4个7、下列四个图形中既是中心对称图形又是轴对称图形的是( )ABCD8、下列图形中,不是中心对称图形的是( )ABCD9、下列图形中,是中心对称图形也是轴对称图形的是()ABCD10、如图,将OAB绕点O逆时针旋转70°到OCD的位置,若AOB40°,则AOD的度数等于( )A29°B30°C31°D32°第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,ABC的顶点A,B分别在x轴,y轴上,ABC90°,OAOB1,BC2,将ABC绕点O顺时针旋转,每次旋转90°,则第2021次旋转结束时,点C的坐标为 _2、若点关于原点的对称点是,则_3、如图,ABC中,ACB=90°,A=28°,若以点C为旋转中心,将ABC逆时针旋转到DEC的位置,点在边DE上,则旋转角的度数是_4、如图,边长为1的正六边形放置于平面直角坐标系中,边在轴正半轴上,顶点在轴正半轴上,将正六边形绕坐标原点顺时针旋转,每次旋转,那么经过第2022次旋转后,顶点的坐标为_5、在平行四边形ABCD中,点A关于对角线的交点O的对称点_三、解答题(5小题,每小题10分,共计50分)1、如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,ABC的顶点均在格点上,点C的坐标为(0, -1), (1)写出A、B两点的坐标;(2)画出ABC关于y轴对称的A1B1C1 ; (3)画出ABC绕点C旋转180°后得到的A2B2C22、如图,在直角坐标系中,点A(3,3),B(4,0),C(0,2)(1)画出ABC关于原点O对称的A1B1C1(2)求A1B1C1的面积3、如图,在等腰中,点D在线段BC的延长线上,连接AD ,将线段AD绕点A逆时针旋转90°得到线段AE,连接CE,射线BA与CE相交于点F(1)依题意补全图形;(2)用等式表示线段BD 与CE的数量关系,并证明;(3)若F为CE中点,则CE的长为_4、如图,已知ABC三个顶点的坐标分A(3,2),B(1,3),C(2,1)将ABC先向右平移4个单位,再向下平移3个单位后,得到ABC,点A,B,C的对应点分别为A、B、C(1)根据要求在网格中画出相应图形;(2)写出ABC三个顶点的坐标5、如图,ABC是等边三角形,ABD顺时针方向旋转后能与CBD重合连接DD,证明:BDD为等边三角形-参考答案-一、单选题1、B【详解】解:A、是轴对称图形,不是中心对称图形,故本选项不符合题意;B、既是轴对称图形,又是中心对称图形,故本选项符合题意;C、不是轴对称图形,是中心对称图形,故本选项不符合题意;D、不是轴对称图形,是中心对称图形,故本选项不符合题意;故选:B【点睛】本题考查了轴对称图形和中心对称图形,熟记中心对称图形的定义(在平面内,把一个图形绕某点旋转,如果旋转后的图形与另一个图形重合,那么这两个图形互为中心对称图形)和轴对称图形的定义(如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形)是解题关键2、A【分析】画出旋转平移后的图形即可解决问题【详解】解:旋转,平移后的图形如图所示,故选:A【点睛】本题考查坐标与图形变化旋转,解题的关键是理解题意,学会利用图象法解决问题3、D【详解】解:A、不是中心对称图形,故本选项不符合题意;B、不是中心对称图形,故本选项不符合题意;C、不是中心对称图形,故本选项不符合题意;D、是中心对称图形,故本选项符合题意;故选:D【点睛】本题主要考查了中心对称图形的定义,熟练掌握在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形是解题的关键4、A【分析】中心对称图形是指绕一点旋转180°后得到的图形与原图形能够完全重合的图形,由此判断即可【详解】解:根据中心对称图形的定义,可知A选项的图形为中心对称图形,故选:A【点睛】本题考查中心对称图形的识别,掌握中心对称图形的基本定义是解题关键5、C【分析】根据中心对称图形的概念:一个平面图形绕某一点旋转180,如果旋转后的图形能够和原图形重合,那么这个图形叫做中心对称图形,这个点就是对称中心. 根据中心对称图形的概念对各选项进行一一分析判定即可求解【详解】A、不是中心对称图形,不符合题意;B、不是中心对称图形,不符合题意;C、是中心对称图形,符合题意;D、不是中心对称图形,不符合题意故选:C【点睛】本题考查了中心对称图形,掌握好中心对称图形,中心对称图形是要寻找对称中心,旋转180度后能够与原来的图形重合6、A【分析】根据轴对称图形与中心对称图形的概念求解【详解】解:第一个图形既不是轴对称图形,也不是中心对称图形,不符合题意;第二个图形是轴对称图形,不是中心对称图形,不符合题意;第三个图形是轴对称图形,不是中心对称图形,不符合题意;第四个图形既是轴对称图形,也是中心对称图形,符合题意;既是中心对称图形又是轴对称图形的只有1个,故选:A【点睛】本题主要考查了中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合7、D【分析】根据轴对称图形与中心对称图形的概念,并结合选项中图形的特点即可选择【详解】解:A、是轴对称图形,不是中心对称图形,故该选项不符合题意;B、不是轴对称图形,是中心对称图形,故该选项不符合题意;C、是轴对称图形,不是中心对称图形,故该选项不符合题意;D、是轴对称图形,是中心对称图形,故该选项符合题意故选:D【点睛】本题考查了中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形沿对称轴折叠后可重合;中心对称图形关键是要寻找对称中心,图形旋转180°后与原图重合8、C【详解】解:选项A是中心对称图形,故A不符合题意;选项B是中心对称图形,故B不符合题意;选项C不是中心对称图形,故C符合题意;选项D是中心对称图形,故D不符合题意;故选C【点睛】本题考查的是中心对称图形的识别,掌握“中心对称图形的定义判断中心对称图形”是解本题的关键,中心对称图形的定义:把一个图形绕某点旋转后能够与自身重合,则这个图形是中心对称图形.9、C【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出【详解】解:A、不是轴对称图形,是中心对称图形,故A选项不符合题意;B、是轴对称图形,不是中心对称图形,故B选项不符合题意;C、既是轴对称图形,又是中心对称图形,故C选项符合题意;D、是轴对称图形,但不是中心对称图形,故D选项不符合题意故选:C【点睛】本题考查中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合10、B【分析】由旋转的性质可得DOB=70°,即可求解【详解】解:将OAB绕点O逆时针旋转70°到OCD,DOB=70°,AOB=40°,AOD=BOD-AOB=30°,故选:B【点睛】本题考查了旋转的性质,熟练掌握旋转的性质是本题的关键二、填空题1、【分析】过点C作 轴于点D,根据 OAOB1,AOB=90°,可得ABO=45°,从而得到CBD=45°,进而得到BD=CD=2,可得到点,再由将ABC绕点O顺时针旋转,第一次旋转90°后,点,将ABC绕点O顺时针旋转,第二次旋转90°后,点,将ABC绕点O顺时针旋转,第三次旋转90°后,点,将ABC绕点O顺时针旋转,第四次旋转90°后,点, 由此发现,ABC绕点O顺时针旋转四次一个循环,即可求解【详解】解:如图,过点C作 轴于点D,OAOB1,AOB=90°,ABO=45°,ABC90°,CBD=45°,BCD=45°,BD=CD,BC2, ,BD=CD=2,OD=OB+BD=3,点,将ABC绕点O顺时针旋转,第一次旋转90°后,点,将ABC绕点O顺时针旋转,第二次旋转90°后,点,将ABC绕点O顺时针旋转,第三次旋转90°后,点,将ABC绕点O顺时针旋转,第四次旋转90°后,点, 由此发现,ABC绕点O顺时针旋转四次一个循环, ,第2021次旋转结束时,点C的坐标为故答案为:【点睛】本题主要考查了勾股定理,坐标与图形,图形的旋转,明确题意,准确得到规律是解题的关键2、【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案【详解】解:由关于坐标原点的对称点为,得,解得:故答案为:【点睛】本题考查了关于原点的对称的点的坐标,解题的关键是掌握关于原点对称的点的横坐标互为相反数,纵坐标互为相反数3、56°【分析】直接利用旋转的性质得出EC=BC,进而利用三角形内角和定理得出E=ABC=62°,即可得出ECB的度数,得出答案即可【详解】解:以点C为旋转中心,将ABC旋转到DEC的位置,点B在边DE上,EC=BC,ACB=90°,A=28°,E=ABC=62°,EBC=62°,ECB=180°-62°-62°=56°,则旋转角的度数是56°故答案为:56°【点睛】此题主要考查了旋转的性质以及三角形内角和定理,得出E=ABC的度数是解题关键4、【分析】连接AD、BD,由勾股定理可得BD,求出OFA=30°,得到OA的值,进而求得OB的值,得到点D的坐标,由题意可得6次一个循环,即可求出经过第2022次旋转后,顶点的坐标【详解】解:如图,连接AD,BD,在正六边形ABCDEF中,在中,将正六边形ABCDEF绕坐标原点O顺时针旋转,每次旋转60°,6次一个循环,经过第2022次旋转后,顶点D的坐标与第一象限中D点的坐标相同,故答案为:【点睛】此题考查了正六边形的性质,平面直角坐标系中图形规律问题,解题的关键是正确分析出点D坐标的规律5、C【分析】根据平行四边形是中心对称图形和中心对称图形的性质解答【详解】如图所示:因为平行四边形是中心对称图形,所以点A关于对角线的交点O的对称点是点C故答案为:C【点睛】考查了中心对称图形的性质,解题关键是熟记中心对称图形的性质三、解答题1、(1)A(-1,2) B(-3,1); (2)见解析;(3)见解析【分析】(1)根据 A,B 的位置写出坐标即可;(2)分别求出 A,B,C 的对应点 A1,B1,C1的坐标,然后描点A1(1,2),B1(3,1),C1(0,-1),顺次连结A1B1, B1C1,C1A1即可;(3)分别求出 A,B,C 的对应点A2(1,-4)、B2(3,-3)、C2(0,-1),然后描点,顺次连结A2B2, B2C2,C2A2即可【详解】(1)由题意 A(-1,2),B(-3,1)(2)ABC关于y轴对称的A1B1C1,对应点的坐标纵坐标不变,横坐标互为相反数,A(-1,2),B(-3,1)C(0,-1),A1(1,2),B1(3,1),C1(0,-1),在平面直角坐标系中描点A1(1,2),B1(3,1),C1(0,-1),顺次连结A1B1, B1C1,C1A1,如图A1B1C1即为所求(3)ABC绕点C旋转180°后得到的A2B2C2,关于点C成中心对称,对应点的横坐标为互为相反数,A(-1,2),B(-3,1)C(0,-1),A2、B2、C2的横坐标分别为1,3,0,纵坐标分别为-1-(2+1)=-4,-1-(1+1)=-3,-1,A2(1,-4)、B2(3,-3)、C2(0,-1),在平面直角坐标系中描点A2(1,-4)、B2(3,-3)、C2(0,-1),顺次连结A2B2, B2C2,C2A2,如图A2B2C2即为所求【点睛】本题主要考查图形与坐标,作图-轴对称变换,旋转变换等知识,解答本题的关键是熟练掌握基本知识,属于中考常考题型2、(1)图形见解析;(2)5【分析】(1)根据关于原点对称的点的坐标特征,依次求出的坐标即可;(2)利用割补法求A1B1C1面积【详解】(1)ABC关于原点O对称的A1B1C1位置如图:(2)【点睛】此题考查了中心对称的知识,解答本题的关键是根据关于原点对称的点的坐标特征得到各点的对应点3、(1)见解析;(2),见解析;(3)4【分析】(1)根据题意补全图形即可;(2)根据题意易得,即可推出即可利用“SAS”证明,得出结论(3)由结合题意可推出,即证明ACF是等腰直角三角形,从而得出,再由勾股定理可求出CF的长,最后根据点F为CE中点,即可求出CE的长【详解】解:(1)依题意补全图形如下: (2)用等式表示线段BD与CE的数量关系是:,证明: 根据题意可知ABC是等腰直角三角形,AD绕点A逆时针旋转90°得到AE, ,即,在和中,(3),ABC是等腰直角三角形,ACF是等腰直角三角形,在中,点F为CE中点,【点睛】本题考查等腰直角三角形的判定和性质,旋转的性质,三角形全等的判定和性质以及勾股定理利用数形结合的思想是解答本题的关键4、(1)见解析;(2),【分析】(1)利用平移变换的性质分别作出,的对应点,即可(2)根据平面直角坐标系写出,的坐标【详解】解:(1)如图,即为所求,(2)根据平面直角坐标系可得:,【点睛】本题考查作图平移变换等知识,解题的关键是掌握平移变换的性质,属于中考常考题型5、见解析【分析】根据旋转的性质得到BD,ABC,再由等边三角形的性质得到ABC60°,据此解题【详解】证明:ABD顺时针方向旋转后能与C重合,BD,ABC,ABC是等边三角形,ABC60°,60°,是等边三角形【点睛】本题考查旋转的性质、等边三角形的判定与性质等知识,是重要考点,掌握相关知识是解题关键