2022年必考点解析北师大版八年级数学下册第三章图形的平移与旋转专项练习试题(精选).docx
-
资源ID:57431829
资源大小:607.25KB
全文页数:25页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022年必考点解析北师大版八年级数学下册第三章图形的平移与旋转专项练习试题(精选).docx
八年级数学下册第三章图形的平移与旋转专项练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列图形中,既是轴对称图形又是中心对称图形的是()ABCD2、在平面直角坐标系中,将点(3,-4)平移到点(-1,4),经过的平移变换为( )A先向左平移4个单位长度,再向上平移4个单位长度B先向左平移4个单位长度,再向上平移8个单位长度C先向右平移4个单位长度,再向下平移4个单位长度D先向右平移4个单位长度,再向下平移8个单位长度3、如图,在中,将绕点顺时针旋转得到,当点的对应点恰好落在边上时,的长为( )A3B4C5D64、如图,将ABC绕点A按逆时针方向旋转得到使点恰好落在BC边上,BAC120°,则C的度数为()A18°B20°C24°D28°5、对于坐标平面内的点,先将该点向右平移1个单位,再向上平移2个单位,这种点的运动称为点的斜平移,如点P(2,3)经1次斜平移后的点的坐标为(3,5)已知点A的坐标为(2,0),点Q是直线l上的一点,点A关于点Q的对称点为点B,点B关于直线l的对称点为点C,若点B由点A经n次斜平移后得到,且点C的坐标为(8,6),则ABC的面积是()A12B14C16D186、下列图案中,是中心对称图形的是( )ABCD7、下列图形中,既是轴对称图形又是中心对称图形的是( ) A等边三角形B平行四边形C正五边形D正六边形8、如图,点A、B、C、D都在方格纸的格点上,若AOB绕点O按逆时针方向旋转到COD的位置,则旋转的角度为( )A30°B45°C90°D135°9、如图,ABC中,C=84°,CBA=56°,将ABC挠点B旋转到DBE,使得DE/AB,则EBC的度数为( )A28°B40°C42°D50°10、下列图形中,是中心对称图形的是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图所示,把图中的交通标志图案绕它的中心旋转一定角度后与自身重合,则这个旋转角度至少为 _2、若一次函数ykx+8(k0)的图象与x轴、y轴分别交于A、B两点,当k的取值变化时,点A随之在x轴上运动,将线段AB绕点B逆时针旋转90°得到BQ,连接OQ,则OQ长的最小值是 _3、如图,ABC绕点B旋转后到达BDE处,若ABC120°,CBD30°,则DBE_,CBE_4、如图,在RtABC中,C90°,ABC30°,AC3,将RtABC绕点A逆时针旋转得到RtABC,使点C落在AB边上,连接BB,则BB的长度为 _5、如图,将ABC平移到ABC的位置(点B在AC边上),若B=55°,C=100°,则ABA的度数为_°三、解答题(5小题,每小题10分,共计50分)1、如图,在平面直角坐标系中,已知ABC(1)将ABC向下平移6个单位,得,画出;(2)画出ABC关于y轴的对称图形;(3)连接,并直接写出A1A2C2的面积2、如图,将ABC绕点A逆时针旋转得到ADE,点D在BC上,已知B70°,求CDE的大小3、一副三角尺(分别含30°,60°,90°和45°,45°,90°)按如图所示摆放,边OB,OC在直线l上,将三角尺ABO绕点O以每秒10°的速度顺时针旋转,当边OA落在直线l上时停止运动,设三角尺ABO的运动时间为t秒(1)如图,AOD ° ;(2)当t5时,BOD °;(3)当t 时,边OD平分AOC;(4)若在三角尺ABO开始旋转的同时,三角尺DCO也绕点O以每秒4°的速度逆时针旋转,当三角尺ABO停止旋转时,三角尺DCO也停止旋转在旋转过程中,是否存在某一时刻使AOC2BOD,若存在,请直接写出的值;若不存在,请说明理由4、如图1,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连接AC和BD,相交于点E,连接BC(1)求证DOBAOC;(2)求CEB的大小;(3)如图2,OAB固定不动,保持OCD的形状和大小不变,将OCD绕点O旋转(OAB和OCD不能重叠),求CEB的大小5、图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,的三个顶点坐标分别为,(1)画出关于x轴对称的;(2)画出绕点O顺时针旋转90°后得到的-参考答案-一、单选题1、D【分析】根据轴对称图形与中心对称图形的概念求解即可【详解】解:A是轴对称图形,不是中心对称图形,故此选项不合题意;B是轴对称图形,不是中心对称图形,故此选项不合题意;C是轴对称图形,不是中心对称图形,故此选项符合题意;D是轴对称图形,也是中心对称图形,故此选项不合题意故选D【点睛】此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;中心对称图形:在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形2、B【分析】利用平移中点的变化规律求解即可【详解】解:在平面直角坐标系中,点(3,-4)的坐标变为(-1,4),点的横坐标减少4,纵坐标增加8,先向左平移4个单位长度,再向上平移8个单位长度故选:B【点睛】本题考查了坐标与图形变化-平移:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度3、A【分析】先根据旋转的性质可得,再根据等边三角形的判定与性质可得,然后根据线段的和差即可得【详解】由旋转的性质得:,是等边三角形,故选:A【点睛】本题考查了旋转的性质、等边三角形的判定与性质等知识点,熟练掌握旋转的性质是解题关键4、B【分析】由,根据等边对等角可得C=CAB',个三角形的外角的性质可得,AB'B=C+CAB'=2C,由旋转的性质可得AB=AB',进而可得B=AB'B=2C,根据三角形的内角和定理可得B+C+CAB=180°,进而求得C=20°.【详解】解:AB'=CB',C=CAB',AB'B=C+CAB'=2C,旋转得AB=AB',B=AB'B=2C,B+C+CAB=180°,3C=180°-120°,C=20°.故选B【点睛】本题考查旋转的性质以及等腰三角形的性质,灵活运用这些的性质解决问题是解答本题的关键5、A【分析】连接CQ,根据中心和轴对称的性质和直角三角形的判定得到ACB90,延长BC交x轴于点E,过C点作CFAE于点F,根据待定系数法得出直线的解析式进而解答即可【详解】解:连接CQ,如图:由中心对称可知,AQBQ,由轴对称可知:BQCQ,AQCQBQ,QACACQ,QBCQCB,QAC+ACQ+QBC+QCB180°,ACQ+QCB90°,ACB90°,ABC是直角三角形,延长BC交x轴于点E,过C点作CFAE于点F,如图,A(2,0),C(8,6),AFCF6,ACF是等腰直角三角形,AEC45°,E点坐标为(14,0),设直线BE的解析式为ykx+b,C,E点在直线上,可得:,解得:,yx+14,点B由点A经n次斜平移得到,点B(n+2,2n),由2nn2+14,解得:n4,B(6,8),ABC的面积SABESACE×12×8×12×612,故选:A【点睛】本题考查轴对称的性质,中心对称的性质,等腰三角形的判定与性质,求解一次函数的解析式,得到的坐标是解本题的关键6、B【分析】由题意依据一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形对各选项分析判断即可【详解】解:A、C、D都是轴对称图形,只有B选项是中心对称图形.故选:B.【点睛】本题考查中心对称图形的识别,注意掌握中心对称图形是要寻找对称中心,旋转180度后与原图重合7、D【分析】根据轴对称图形,中心对称图形的定义去判断即可【详解】等边三角形是轴对称图形,不是中心对称图形,A不符合题意;平行四边形不是轴对称图形,是中心对称图形,B不符合题意;正五边形是轴对称图形,不是中心对称图形,C不符合题意;正六边形是轴对称图形,也是中心对称图形,D符合题意;故选D【点睛】本题考查了轴对称图形,中心对称图形的定义,轴对称图形即将一个图形沿着某条直线折叠,直线两旁的部分完全重合,中心对称图形即将一个图形绕某点旋转180°后与原图形完全重合,熟练掌握两种图形的定义是解题的关键8、C【分析】根据旋转的性质,对应边的夹角BOD即为旋转角【详解】解:AOB绕点O按逆时针方向旋转到COD的位置,对应边OB、OD的夹角BOD即为旋转角,旋转的角度为90°故选:C【点睛】本题考查了旋转的性质,熟记性质以及旋转角的确定是解题的关键9、B【分析】先求出A=40°,再根据旋转和平行得出DBA=40°,进而可求EBC的度数【详解】解:ABC中,C=84°,CBA=56°,A=180°-C -CBA=40°,由旋转可知,D=A=40°,EBC=DBA,DE/AB,D=DBA=40°,EBC=DBA=40°,故选:B【点睛】本题考查了旋转的性质和平行线的性质,解题关键是熟记旋转的性质,准确识图,正确进行推导计算10、B【分析】根据中心对称图形的概念,对各选项分析判断即可得解把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形【详解】选项、均不能找到这样的一个点,使图形绕某一点旋转后与原来的图形重合,所以不是中心对称图形,选项能找到这样的一个点,使图形绕某一点旋转后与原来的图形重合,所以是中心对称图形,故选:【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合二、填空题1、120°度【分析】根据图形的对称性,用360°除以3计算即可得解【详解】解:360°÷3=120°,旋转的角度是120°的整数倍,旋转的角度至少是120°故答案为:120°【点睛】本题考查了旋转对称图形,仔细观察图形求出旋转角是120°的整数倍是解题的关键2、8【分析】根据一次函数解析式可得:,过点B作轴,过点A作,过点Q作,由旋转的性质可得,依据全等三角形的判定定理及性质可得:MABNBQ,即可确定点Q的坐标,然后利用勾股定理得出OQ的长度,最后考虑在什么情况下取得最小值即可【详解】解:函数得:,过点B作轴,过点A作,过点Q作,连接OQ,如图所示:将线段BA绕点B逆时针旋转得到线段BQ,在MAB与NBQ中,MABNBQ,点Q的坐标为,当或时,取得最小值为8,故答案为:8【点睛】题目主要考查一次函数与几何的综合问题,包括与坐标轴的交点,旋转,全等三角形的判定和性质,勾股定理等,理解题意,作出相应图形是解题关键3、120°; 150° 【分析】图形的旋转只是改变图形的位置,不改变图形的形状与大小,旋转前后两个三角形全等,并且旋转角都相等,即可求解 【详解】解:根据旋转的性质得,根据题意,旋转角为,故答案是:,【点睛】本题主要考查了旋转的性质,解题的关键是掌握旋转前后两个三角形全等,并且旋转角都相等的内容 4、6【分析】利用含30°角的直角三角形的性质可得AB6,BAC60°,根据旋转可证ABB'是等边三角形,从而BB'AB6【详解】解:在RtABC中,C90°,ABC30°,BAC60°,AB2AC6,将RtABC绕点A逆时针旋转得到RtABC,BAB'CAC'60°,ABAB',ABB'是等边三角形,BB'AB6故答案为:6【点睛】本题主要考查了图形的旋转,等边三角形判定和性质,直角三角形的性质,熟练掌握相关知识点是解题的关键5、25【分析】先根据三角形内角和定理求出A=25°,然后根据平移的性质得到,则【详解】解:B=55°,C=100°,A=180°BC=25°,由平移的性质可得,故答案为:25【点睛】本题主要考查了三角形内角和定理,平移的性质,平行线的性质,解题的关键在于能够熟练掌握平移的性质三、解答题1、(1)见解析;(2)见解析;(3)见解析,7【分析】(1)依据平移的方向和距离,即可得到;(2)依据轴对称的性质,即可得到;(3)依据割补法进行计算,即可得到A1A2C2的面积【详解】(1)如图所示,即为所求;(2)如图所示,即为所求;(3)如图所示,A1A2C2即为所求作的三角形,A1A2C2的面积3×6×2×3×2×6×1×4183627【点睛】本题考查作图平移变换,轴对称变换,作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形2、【分析】先由旋转的性质证明再利用等边对等角证明从而可得答案.【详解】解: 把ABC绕点A逆时针旋转得到ADE,B70°, 【点睛】本题考查的是旋转的性质,等腰三角形的性质,掌握“旋转前后的对应角相等与等边对等角”是解本题的关键.3、(1)105,6300;(2)85;(3)6;(4)当或时,【分析】(1)由及三角板的特点,即可求出的大小,再由度和分的进率计算,即可填空;(2)当时,画出图形,结合题意可知,即由可求出的大小;(3)结合题意,画出图形,由此可知,从而可求出旋转角,即可求出t的值;(4)由题意可求出当OA和OC重合时,可求出t的值为,即可分别用t表示出和时的大小当OB和OD重合时,可求出t的值为,即可分别用t表示出和时的大小最后根据进行分类讨论当时、 当时和当时,求出t的值,再舍去不合题意的值即可【详解】(1),故答案为:105,6300;(2)当时,即三角尺ABO绕点O顺时针旋转了,如图,即为旋转后的图形由旋转可知,故答案为85;(3)当三角尺绕点O顺时针旋转到如图所示的的位置时,边OD平分AOC ,;故答案为:6;(4)当边OA落在直线l上时停止运动时,当OA和OC重合时,即有,解得:当时,当时,当OB和OD重合时,即有,解得:当时,当时,可根据分类讨论,当时,有,解得:,符合题意;当时,即有解得:,符合题意;当时,即有解得:,不符合题意舍;综上,可知当或时,【点睛】本题考查三角板中的角度计算,旋转中的角度计算,较难利用数形结合和分类讨论的思想是解答本题的关键4、(1)见详解;(2)120°;(2)120°【分析】(1)如图1,根据等边三角形的性质得到OD=OC=OA=OB,COD=AOB=60°,则利用根据“SAS”判断AOCBOD;(2)利用AOCBOD得到CAO=DBO,然后根据三角形内角和可得到AEB=AOB=60°,即可求出答案;(3)如图2,与(1)的方法一样可证明AOCBOD;则CAO=DBO,然后根据三角形内角和可求出AEB=AOB=60°,即可得到答案【详解】(1)证明:如图1,ODC和OAB都是等边三角形,OD=OC=OA=OB,COD=AOB=60°,BOD=AOC=120°,在AOC和BOD中AOCBOD;(2)解:AOCBOD,CAO=DBO,1=2,AEB=AOB=60°,;(3)解:如图2,ODC和OAB都是等边三角形, OD=OC=OA=OB,COD=AOB=60°,AOB+BOC=COD+BOC,即AOC=BOD,在AOC和BOD中AOCBOD;CAO=DBO,1=2,AEB=AOB=60°,;即CEB的大小不变【点睛】本题考查了几何变换综合题:熟练掌握旋转的性质、等边三角形的性质和全等三角形的判定与性质;利用类比的方法解决(3)小题5、(1)见解析;(2)见解析【分析】(1)画出ABO关于x轴对称的A1B1O即可;(2)画出ABO绕点O逆时针旋转90°后的A2B2O即可;【详解】解:ABO关于x轴对称的A1B1O如图所示;ABO绕点O逆时针旋转90°后的A2B2O如图所示;【点睛】本题考查了作图-旋转变换、轴对称变换,熟练掌握网格结构,准确找出对应点的位置是解题的关键