欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    实用的高中数学说课稿合集6篇.docx

    • 资源ID:57439258       资源大小:27.36KB        全文页数:17页
    • 资源格式: DOCX        下载积分:8金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要8金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    实用的高中数学说课稿合集6篇.docx

    实用的高中数学说课稿合集6篇实用的高中数学说课稿合集6篇 作为一名教职工,往往需要进行说课稿编写工作,借助说课稿可以让教学工作更科学化。那么应当如何写说课稿呢?以下是小编帮大家整理的高中数学说课稿6篇,仅供参考,欢迎大家阅读。 高中数学说课稿篇1 一、教材分析 1、教材地位和作用 二面角及其平面角的概念是立体几何最重要的概念之一。二面角的概念发展、完善了空间角的概念;而二面角的平面角不但定量描述了两相交平面的相对位置,同时它也是空间中线线、线面、面面垂直关系的一个汇集点。搞好本节课的学习,对学生系统地掌握直线和平面的知识乃至于创新能力的培养都具有十分重要的意义。教学大纲明确要求要让学生掌握二面角及其平面角的概念和运用。 2、教学目标 根据上面对教材的分析,并结合学生的认知水平和思维特点,确定本节课的教学目标: 认知目标: (1)使学生正确理解二面角及其平面角的概念,并能初步运用它们解决实际问题。 (2)进一步培养学生把空间问题转化为平面问题的化归思想。 能力目标:以培养学生的创新能力和动手能力为重点。 (1)突出对类比、直觉、发散等探索性思维的培养,从而提高学生的创新能力。 (2)通过对图形的观察、分析、比较和操作来强化学生的动手操作能力。 教育目标: (1)使学生认识到数学知识来自实践,并服务于实践,从而增强学生应用数学的意识。 (2)通过揭示线线、线面、面面之间的内在联系,进一步培养学生联系的辩证唯物主义观点。 3、本节课教学的重、难点是两个过程的教学: (1)二面角的平面角概念的形成过程。 (2)寻找二面角的平面角的方法的发现过程。 其理由如下: (1)现行教材省略了概念的形成过程和方法的发现过程,没有反映出科学认识产生的辩证过程,与学生的认知规律相悖,给学生的学习造成了很大的困难,非常不利于学生创新能力、独立思考能力以及动手能力的培养。 (2)现代认知学认为,揭示知识的形成过程,对学生学习新知识是十分必要的。同时通过展现知识的发生、发展过程,给学生思考、探索、发现和创新提供了最大的空间,可以使学生在整个教学过程中始终处于积极的思维状态,进而培养他们独立思考和大胆求索的精神,这样才能全面落实本节课的教学目标。 二、指导思想和教学方法 在设计本教学时,主要贯彻了以下两个思想: 1、树立以学生发展为本的思想。通过构建以学习者为中心、有利于学生主体精神、创新能力健康发展的宽松的教学环境,提供学生自主探索和动手操作的机会,鼓励他们创新思考,亲身参与概念和方法的形成过程。2、坚持协同创新原则。把教材创新、教法创新以及学法创新有机地统一起来,因为只有教师创新地教,学生创新地学,才能营建一个有利于创新能力培养的良好环境。 首先是教材创新。 (1)在二面角的平面角概念引入上,我变课本上的“直接给出定义”为“类比猜想操作定义”,也就是变封闭的、逻辑演绎体系为开放的、探索性的发现过程。 (2)在引入定义之后,例题讲解之前,引导学生发现寻找二面角的平面角的方法,为例题做好铺垫。 (3)重新编排例题。 其次是教法创新。采用多种创新的教学方法,包括问题解决法、类比发现法、研究发现法等教学方法。 这组教学方法的特点是教师通过创设问题情境,引导学生逐步发现知识的形成过程,使教学活动真正建立在学生自主活动和探索的基础上,着力培养学生的创新能力。 这组教学方法使得学生在解决问题的过程中学数学,用数学,不仅强调动脑思考,而且强调动手操作,亲身体验,注重多感官参与、多种心理能力的投入,通过学生全面、多样的主体实践活动,促进他们独立思考能力、动手能力等多方面素质的整体发展。 教学手段的现代化有利于提高课堂效益,有利于创新人才的培养,根据本节课的教学需要,确定利用几何画板制作课件来辅助教学;此外,为加强直观教学,教师可预先做好一些模型。 最后是学法创新。意在指导学生会创新地学。 1、乐学:在整个学习过程中学生要保持强烈的好奇心和求知欲,不断强化自己的创新意识,全身心地投入到学习中去,成为学习的主人。 2、学会:在掌握基础知识的同时,学生要注意领会化归、类比联想等数学思想方法的运用,学会建立完善的认知结构。 3、会学:通过自已亲身参与,学生要领会复习类比和深入研究这两种知识创新的方法,从而既学到知识,又学会创新。 三、程序安排 (一)、二面角 1、揭示概念产生背景。 心理学研究表明,当学生明确数学概念的学习目的和意义时,就会对概念的学习产生浓厚的兴趣。创设问题情境,激发了学生的创新意识,营造了创新思维的氛围。 问题情境1、我们是如何定量研究两平行平面的相对位置的? 问题情境2、立几中常用距离和角来定量描述两个元素之间的相对位置,为什么不引入两平行平面所成的角? 问题情境3、我们应如何定量研究两个相交平面之间的相对位置呢? 通过这三个问题,打开了学生的原有认知结构,为知识的创新做好了准备;同时也让学生领会到,二面角这一概念的产生是因为研究两相交平面的相对位置的需要,从而明确新课题研究的必要性,触发学生积极思维活动的展开。 2、展现概念形成过程。 高中数学说课稿篇2 一、教学背景分析 1、教材结构分析 圆的方程安排在高中数学第二册(上)第七章第六节。圆作为常见的简单几何图形,在实际生活和生产实践中有着广泛的应用。圆的方程属于解析几何学的基础知识,是研究二次曲线的开始,对后续直线与圆的位置关系、圆锥曲线等内容的学习,无论在知识上还是方法上都有着积极的意义,所以本节内容在整个解析几何中起着承前启后的作用。 2、学情分析 圆的方程是学生在初中学习了圆的概念和基本性质后,又掌握了求曲线方程的一般方法的基础上进行研究的。但由于学生学习解析几何的时间还不长、学习程度较浅,且对坐标法的运用还不够熟练,在学习过程中难免会出现困难。另外学生在探究问题的能力,合作交流的意识等方面有待加强。 根据上述教材结构与内容分析,考虑到学生已有的认知结构和心理特征,我制定如下教学目标: 3、教学目标 (1)知识目标:掌握圆的标准方程; 会由圆的标准方程写出圆的半径和圆心坐标,能根据条件写出圆的标准方程; 利用圆的标准方程解决简单的实际问题。 (2)能力目标:进一步培养学生用代数方法研究几何问题的能力; 加深对数形结合思想的理解和加强对待定系数法的运用; 增强学生用数学的意识。 (3)情感目标:培养学生主动探究知识、合作交流的意识; 在体验数学美的过程中激发学生的学习兴趣。 根据以上对教材、教学目标及学情的分析,我确定如下的教学重点和难点: 4、教学重点与难点 (1)重点:圆的标准方程的求法及其应用。 (2)难点:会根据不同的已知条件求圆的标准方程; 选择恰当的坐标系解决与圆有关的实际问题。 为使学生能达到本节设定的教学目标,我再从教法和学法上进行分析: 二、教法学法分析 1、教法分析为了充分调动学生学习的积极性,本节课采用“启发式”问题教学法,用环环相扣的问题将探究活动层层深入,使教师总是站在学生思维的最近发展区上。另外我恰当的利用多媒体课件进行辅助教学,借助信息技术创设实际问题的情境既能激发学生的学习兴趣,又直观的引导了学生建模的过程。 2、学法分析通过推导圆的标准方程,加深对用坐标法求轨迹方程的理解。通过求圆的标准方程,理解必须具备三个独立的条件才可以确定一个圆。通过应用圆的标准方程,熟悉用待定系数法求的过程。 下面我就对具体的教学过程和设计加以说明: 三、教学过程与设计 整个教学过程是由七个问题组成的问题链驱动的,共分为五个环节: 创设情境启迪思维深入探究获得新知应用举例巩固提高 反馈训练形成方法小结反思拓展引申 下面我从纵横两方面叙述我的教学程序与设计意图。 首先:纵向叙述教学过程 (一)创设情境启迪思维 问题一已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2。7m,高为3m的货车能不能驶入这个隧道? 通过对这个实际问题的探究,把学生的思维由用勾股定理求线段CD的长度转移为用曲线的方程来解决。一方面帮助学生回顾了旧知求轨迹方程的一般方法,另一方面,在得到汽车不能通过的结论的同时学生自己推导出了圆心在原点,半径为4的圆的标准方程,从而很自然的进入了本课的主题。用实际问题创设问题情境,让学生感受到问题来源于实际,应用于实际,激发了学生的学习兴趣和学习欲望。这样获取的知识,不但易于保持,而且易于迁移。 通过对问题一的探究,抓住了学生的注意力,把学生的思维引到用坐标法研究圆的方程上来,此时再把问题深入,进入第二环节。 (二)深入探究获得新知 问题二1、根据问题一的探究能不能得到圆心在原点,半径为的圆的方程? 2、如果圆心在,半径为时又如何呢? 这一环节我首先让学生对问题一进行归纳,得到圆心在原点,半径为4的圆的标准方程后,引导学生归纳出圆心在原点,半径为r的圆的标准方程。然后再让学生对圆心不在原点的情况进行探究。我预设了三种方法等待着学生的探究结果,分别是:坐标法、图形变换法、向量平移法。 得到圆的标准方程后,我设计了由浅入深的三个应用平台,进入第三环节。 (三)应用举例巩固提高 I、直接应用内化新知 问题三1、写出下列各圆的标准方程: (1)圆心在原点,半径为3; (2)经过点,圆心在点。 2、写出圆的圆心坐标和半径。 我设计了两个小问题,第一题是直接或间接的给出圆心坐标和半径求圆的标准方程,第二题是给出圆的标准方程求圆心坐标和半径,这两题比较简单,可以安排学生口答完成,目的是先让学生熟练掌握圆心坐标、半径与圆的标准方程之间的关系,为后面探究圆的切线问题作准备。 II、灵活应用提升能力 问题四1、求以点为圆心,并且和直线相切的圆的方程。 2、求过点,圆心在直线上且与轴相切的圆的方程。 3、已知圆的方程为,求过圆上一点的切线方程。 你能归纳出具有一般性的结论吗? 已知圆的方程是,经过圆上一点的切线的方程是什么? 我设计了三个小问题,第一个小题有了刚刚解决问题三的基础,学生会很快求出半径,根据圆心坐标写出圆的标准方程。第二个小题有些困难,需要引导学生应用待定系数法确定圆心坐标和半径再求解,从而理解必须具备三个独立的条件才可以确定一个圆。第三个小题解决方法较多,我预设了四种方法再一次为学生的发散思维创设了空间。最后我让学生由第三小题的结论进行归纳、猜想,在论证经过圆上一点圆的切线方程的过程中,又一次模拟了真理发现的过程,使探究气氛达到高潮。 III、实际应用回归自然 问题五如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度AB=20m,拱高OP=4m,在建造时每隔4m需用一个支柱支撑,求支柱的长度(精确到0。01m)。 我选用了教材的例3,它是待定系数法求出圆的三个参数的又一次应用,同时也与引例相呼应,使学生形成解决实际问题的一般方法,培养了学生建模的习惯和用数学的意识。 (四)反馈训练形成方法 问题六1、求过原点和点,且圆心在直线上的圆的标准方程。 2、求圆过点的切线方程。 3、求圆过点的切线方程。 接下来是第四环节反馈训练。这一环节中,我设计三个小题作为巩固性训练,给学生一块“用武”之地,让每一位同学体验学习数学的乐趣,成功的喜悦,找到自信,增强学习数学的愿望与信心。另外第3题是我特意安排的一道求过圆外一点的圆的切线方程,由于学生刚刚归纳了过圆上一点圆的切线方程,因此很容易产生思维的负迁移,另外这道题目有两解,学生容易漏掉斜率不存在的情况,这时引导学生用数形结合的思想,结合初中已有的圆的知识进行判断,这样的设计对培养学生思维的严谨性具有良好的效果。 (五)小结反思拓展引申 1、课堂小结 把圆的标准方程与过圆上一点圆的切线方程加以小结,提炼数形结合的思想和待定系数的方法 圆心为,半径为r的圆的标准方程为: 圆心在原点时,半径为r的圆的标准方程为:。 已知圆的方程是,经过圆上一点的切线的方程是:。 2、分层作业 (A)巩固型作业:教材P81-82:(习题7。6)1,2,4。(B)思维拓展型作业:试推导过圆上一点的切线方程。 3、激发新疑 问题七1、把圆的标准方程展开后是什么形式? 2、方程表示什么图形? 在本课的结尾设计这两个问题,作为对这节课内容的巩固与延伸,让学生体会知识的起点与终点都蕴涵着问题,旧的问题解决了,新的问题又产生了。在知识的拓展中再次掀起学生探究的热情。另外它为下节课研究圆的一般方程作了重要的准备。 以上是我纵向的教学过程及简单的设计意图,接下来,我从三个方面横向的进一步阐述我的教学设计: 横向阐述教学设计 (一)突出重点抓住关键突破难点 求圆的标准方程既是本节课的教学重点也是难点,为此我布设了由浅入深的学习环境,先让学生熟悉圆心、半径与圆的标准方程之间的关系,逐步理解三个参数的重要性,自然形成待定系数法的解题思路,在突出重点的同时突破了难点。 第二个教学难点就是解决实际应用问题,这是学生固有的难题,主要是因为应用问题的题目冗长,学生很难根据问题情境构建数学模型,缺乏解决实际问题的信心,为此我首先用一道题目简洁、贴近生活的实例进行引入,激发学生的求知欲,同时我借助多媒体课件的演示,引导学生真正走入问题的情境之中,并从中抽象出数学模型,从而消除畏难情绪,增强了信心。最后再形成应用圆的标准方程解决实际问题的一般模式,并尝试应用该模式分析和解决第二个应用问题问题五。这样的设计,使学生在解决问题的同时,形成了方法,难点自然突破。 (二)学生主体教师主导探究主线 本节课的设计用问题做链,环环相扣,使学生的探究活动贯穿始终。从圆的标准方程的推导到应用都是在问题的指引、我的指导下,由学生探究完成的。另外,我重点设计了两次思维发散点,分别是问题二和问题四的第三问,要求学生分组讨论,合作交流,为学生设立充分的探究空间,学生在交流成果的过程中,既体验了科学研究和真理发现的复杂与艰辛,又在我的适度引导、侧面帮助、不断肯定下顺利完成了探究活动并走向成功,在一个个问题的驱动下,高效的完成本节的学习任务。 (三)培养思维提升能力激励创新 为了培养学生的理性思维,我分别在问题一和问题四中,设计了两次由特殊到一般的学习思路,培养学生的归纳概括能力。在问题的设计中,我利用一题多解的探究,纵向挖掘知识深度,横向加强知识间的联系,培养了学生的创新精神,并且使学生的有效思维量加大,随时对所学知识和方法产生有意注意,使能力与知识的形成相伴而行。 以上是我对这节课的教学预设,具体的教学过程还要根据学生在课堂中的具体情况适当调整,向生成性课堂进行转变。最后我以赫尔巴特的一句名言结束我的说课,发挥我们的创造性,力争“使教育过程成为一种艺术的事业”。 高中数学说课稿篇3 一、教材分析 1教材所处的地位和作用 本节课所学内容为算法案例3,主要学习如何给一组数据排序,学习作程序框图和设计程序,通过本节课的学习之后将能使许多复杂的问题在计算机上得到解决,减少工作量。 2教学的重点和难点 重点:两种排序法的排序步骤及计算机程序设计 难点:排序法的计算机程序设计 二、教学目标分析 1知识与技能目标: 掌握数据排序的原理能使用直接排序法与冒泡排序法给一组数据排序,进而能设计冒泡排序法的程序框图及程序,理解数学算法与计算机算法的区别,理解计算机对数学的辅助作用。 2过程与方法目标: 能根据排序法中的直接插入排序法与冒泡排序法的步骤,了解数学计算转换为计算机计算的途径,从而探究计算机算法与数学算法的区别,体会计算机对数学学习的辅助作用。 3情感,态度和价值观目标 通过对排序法的学习,领会数学计算与计算机计算的区别,充分认识信息技术对数学的促进。 三、教学方法与手段分析 1教学方法:充分发挥学生的主体作用和教师的主导作用,采用启发式,并遵循循序渐进的教学原则。这有利于学生掌握从现象到本质,从已知到未知逐步形成概念的学习方法,有利于发展学生抽象思维能力和逻辑推理能力。 2教学手段:通过各种教学媒体(计算机)调动学生参与课堂教学的主动性与积极性。 四、学法分析 模仿排序法中数字排序的步骤,理解计算机计算的一般步骤,领会数学计算在计算机上实施的要求。 五、教学过程分析 一、创设情境 提出问题:大家考完试后如果要排一下成绩的话,单靠人手该怎样操作呢?如果我们用计算机里的软件电子表格对分数排序就非常简单,那么电子计算机是怎么对数据进行排序的呢? 通过这个问题,引出我们这节课所要学习的两种排序方法-直接插入排序法与冒泡排序法 二、探索新知 这里我先让学生们阅读课本P30-P31的内容,然后回答下面的问题: (1)排序法中的直接插入排序法与冒泡排序法的步骤有什么区别? (2)冒泡法排序中对5个数字进行排序最多需要多少趟? (3)在冒泡法排序对5个数字进行排序的每一趟中需要比较大小几次? 提出问题,然后让学生们作出回答,这样可以促使学生们能够积极思考,自主地去学习新的知识,而不只是单向的由老师向学生灌输。 三、知识应用 例1用冒泡排序法对数据7,5,3,9,1从小到大进行排序 (根据刚刚提问所总结的方法完成解题步骤) 练习:写出用冒泡排序法对5个数据4,11,7,9,6排序的过程中每一趟排序的结果. (及时将学到的知识应用,有利于知识的掌握) 例2设计冒泡排序法对5个数据进行排序的程序框图. (在之前所学习知识的基础上画出程序框图,然后给出一个思考题) 思考:直接插入排序法的程序框图如何设计?可否把上述程序框图转化为程序? (之后出一个练习题,找出思考题的答案) 练习:用直接插入排序法对例1中的数据从小到大排序,画出程序框图,并转化为程序运行求出最终答案。 (这里可以使学生们领会数学计算与计算机计算的区别,充分认识信息技术对数学的促进。) 四、课堂小结: (1)数字排序法中的常见的两种排序法直接插入排序法与冒泡排序法它们的排序步骤 (2两种排序法的计算机程序设计 (3)注意循环语句的使用与算法的循环次数,对算法进行改进。 通过小结使学生们对知识有一个系统的认识,突出重点,抓住关键,培养概括能力。 高中数学说课稿篇4 一、地位作用 数列是高中数学重要的内容之一,等比数列是在学习了等差数列后新的一种特殊数列,在生活中如储蓄、分期付款等应用较为广泛,在整个高中数学内容中数列与已学过的函数及后面的数列极限有密切联系,它也是培养学生数学能力的良好题材,它可以培养学生的观察、分析、归纳、猜想及综合解决问题的能力。 基于此,设计本节的数学思路上: 利用类比的思想,联系等差数列的概念及通项公式的学习方法,采取自学、引导、归纳、猜想、类比总结的教学思路,充分发挥学生主观能动性,调动学生的主体地位,充分体现教为主导、学为主体、练为主线的教学思想。 二、教学目标 知识目标:1)理解等比数列的概念 2)掌握等比数列的通项公式 3)并能用公式解决一些实际问题 能力目标:培养学生观察能力及发现意识,培养学生运用类比思想、解决分析问题的能力。 三、教学重点 1)等比数列概念的理解与掌握关键:是让学生理解“等比”的特点 2)等比数列的通项公式的推导及应用 四、教学难点 “等比”的理解及利用通项公式解决一些问题。 五、教学过程设计 (一)预习自学环节。(8分钟) 首先让学生重新阅读课本105页国际象棋发明者的故事,并出示预习提纲,要求学生阅读课本P122至P123例1上面。 回答下列问题 1)课本中前3个实例有什么特点?能否举出其它例子,并给出等比数列的定义。 2)观察以下几个数列,回答下面问题: 1, 1,2,4,8 1,2,4,8 1,1,1,1, 1,0,1,0 有哪几个是等比数列?若是公比是什么? 公比q为什么不能等于零?首项能为零吗? 公比q=1时是什么数列? q0时数列递增吗?q0时递减吗? 3)怎样推导等比数列通项公式?课本中采取了什么方法?还可以怎样推导? 4)等比数列通项公式与函数关系怎样? (二)归纳主导与总结环节(15分钟) 这一环节主要是通过学生回答为主体,教师引导总结为主线解决本节两个重点内容。 通过回答问题(1)(2)给出等比数列的定义并强调以下几点:定义关键字“第二项起”“常数”; 引导学生用数学语言表达定义:=q(n2);q=1时为非零常数数列,既是等差数列又是等比数列。引申:若数列公比为字母,分q=1和q1两种情况;引入分类讨论的思想。 q0时等比数列单调性不定,q0为摆动数列,类比等差数列d0为递增数列,d0为递减数列。 通过回答问题(3)回忆等差数列的推导方法,比较两个数列定义的不同,引导推出等比数列通项公式。 法一:归纳法,学会从特殊到一般的方法,并从次数中发现规律,培养观察力。 法二:迭乘法,联系等差数列“迭加法”,培养学生类比能力及新旧知识转化能力。 高中数学说课稿篇5 一、说教材 1.从在教材中的地位与作用来看 等比数列的前n项和是数列这一章中的一个重要内容,它不仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,而且公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思想方法,都是学生今后学习和工作中必备的数学素养. 2.从学生认知角度看 从学生的思维特点看,很容易把本节内容与等差数列前n项和从公式的形成、特点等方面进行类比,这是积极因素,应因势利导.不利因素是:本节公式的推导与等差数列前n项和公式的推导有着本质的不同,这对学生的思维是一个突破,另外,对于q=1这一特殊情况,学生往往容易忽视,尤其是在后面使用的过程中容易出错. 3.学情分析 教学对象是刚进入高中的学生,虽然具有一定的分析问题和解决问题的能力,逻辑思维能力也初步形成,但由于年龄的原因,思维尽管活跃、敏捷,却缺乏冷静、深刻,因此片面、不严谨. 4.重点、难点 教学重点:公式的推导、公式的特点和公式的运用. 教学难点:公式的推导方法和公式的灵活运用. 公式推导所使用的“错位相减法”是高中数学数列求和方法中最常用的方法之一,它蕴含了重要的数学思想,所以既是重点也是难点. 二、说目标 知识与技能目标: 理解并掌握等比数列前n项和公式的推导过程、公式的特点,在此基础上能初步应用公式解决与之有关的问题. 过程与方法目标: 通过对公式推导方法的探索与发现,向学生渗透特殊到一般、类比与转化、分类讨论等数学思想,培养学生观察、比较、抽象、概括等逻辑思维能力和逆向思维的能力. 情感与态度价值观: 通过对公式推导方法的探索与发现,优化学生的思维品质,渗透事物之间等价转化和理论联系实际的辩证唯物主义观点. 三、说过程 学生是认知的主体,设计教学过程必须遵循学生的认知规律,尽可能地让学生去经历知识的形成与发展过程,结合本节课的特点,我设计了如下的教学过程: 1.创设情境,提出问题 在古印度,有个名叫西萨的人,发明了国际象棋,当时的印度国王大为赞赏,对他说:我可以满足你的任何要求.西萨说:请给我棋盘的64个方格上,第一格放1粒小麦,第二格放2粒,第三格放4粒,往后每一格都是前一格的两倍,直至第64格.国王令宫廷数学家计算,结果出来后,国王大吃一惊.为什么呢? 设计意图:设计这个情境目的是在引入课题的同时激发学生的兴趣,调动学习的积极性.故事内容紧扣本节课的主题与重点. 此时我问:同学们,你们知道西萨要的是多少粒小麦吗?引导学生写出麦粒总数.带着这样的问题,学生会动手算了起来,他们想到用计算器依次算出各项的值,然后再求和.这时我对他们的这种思路给予肯定. 设计意图:在实际教学中,由于受课堂时间限制,教师舍不得花时间让学生去做所谓的“无用功”,急急忙忙地抛出“错位相减法”,这样做有悖学生的认知规律:求和就想到相加,这是合乎逻辑顺理成章的事,教师为什么不相加而马上相减呢?在整个教学关键处学生难以转过弯来,因而在教学中应舍得花时间营造知识形成过程的氛围,突破学生学习的障碍.同时,形成繁难的情境激起了学生的求知欲,迫使学生急于寻求解决问题的新方法,为后面的教学埋下伏笔. 2.师生互动,探究问题 在肯定他们的思路后,我接着问:1,2,22,263是什么数列?有何特征?应归结为什么数学问题呢? 探讨1:,记为(1)式,注意观察每一项的特征,有何联系?(学生会发现,后一项都是前一项的2倍) 探讨2:如果我们把每一项都乘以2,就变成了它的后一项,(1)式两边同乘以2则有,记为(2)式.比较(1)(2)两式,你有什么发现? 设计意图:留出时间让学生充分地比较,等比数列前n项和的公式推导关键是变“加”为“减”,在教师看来这是“天经地义”的,但在学生看来却是“不可思议”的,因此教学中应着力在这儿做文章,从而抓住培养学生的辩证思维能力的良好契机. 经过比较、研究,学生发现:(1)、(2)两式有许多相同的项,把两式相减,相同的项就消去了,得到:.老师指出:这就是错位相减法,并要求学生纵观全过程,反思:为什么(1)式两边要同乘以2呢? 设计意图:经过繁难的计算之苦后,突然发现上述解法,不禁惊呼:真是太简洁了!让学生在探索过程中,充分感受到成功的情感体验,从而增强学习数学的兴趣和学好数学的信心. 3.类比联想,解决问题 这时我再顺势引导学生将结论一般化, 这里,让学生自主完成,并喊一名学生上黑板,然后对个别学生进行指导. 设计意图:在教师的指导下,让学生从特殊到一般,从已知到未知,步步深入,让学生自己探究公式,从而体验到学习的愉快和成就感. 对不对?这里的q能不能等于1?等比数列中的公比能不能为1?q=1时是什么数列?此时sn=?(这里引导学生对q进行分类讨论,得出公式,同时为后面的例题教学打下基础.) 再次追问:结合等比数列的通项公式an=a1qn-1,如何把sn用a1、an、q表示出来?(引导学生得出公式的另一形式) 设计意图:通过反问精讲,一方面使学生加深对知识的认识,完善知识结构,另一方面使学生由简单地模仿和接受,变为对知识的主动认识,从而进一步提高分析、类比和综合的能力.这一环节非常重要,尽管时间有时比较少,甚至仅仅几句话,然而却有画龙点睛之妙用. 4.讨论交流,延伸拓展 高中数学说课稿篇6 我将从教学理念;教材分析;教学目标;教学过程;教法、学法;教学评价六个方面来陈述我对本节课的设计方案。 一、教学理念 新的课程标准明确指出“数学是人类文化的重要组成部分,构成了公民所必须具备的一种基本素质。”其含义就是:我们不仅要重视数学的应用价值,更要注重其思维价值和人文价值。 因此,创造性地使用教材,积极开发、利用各种教学资源,创设教学情境,让学生通过主动参与、积极思考、与人合作交流和创新等过程,获得情感、能力、知识的全面发展。本节课力图打破常规,充分体现以学生为本,全方位培养、提高学生素质,实现课程观念、教学方式、学习方式的转变。 二、教材分析 三角函数是中学数学的重要内容之一,它既是解决生产实际问题的工具,又是学习高等数学及其它学科的基础。本节课是在学习了任意角的三角函数,两角和与差的三角函数以及正、余弦函数的图象和性质后,进一步研究函数yAsin(x+)的简图的画法,由此揭示这类函数的图象与正弦曲线的关系,以及A、的物理意义,并通过图象的变化过程,进一步理解正、余弦函数的性质,它是研究函数图象变换的一个延伸,也是研究函数性质的一个直观反映。共3课时,本节课是继学习完振幅、周期、初相变换后的第二课时。 本节课倡导学生自主探究,在教师的引导下,通过五点作图法正确找出函数ysinx到ysin(x+)的图象变换规律是本节课的重点。 难点是对周期变换、相位变换先后顺序调整后,将影响图象平移量的理解。因此,分析清不管哪种顺序变换,都是对一个字母x而言的变换成为突破本节课教学难点的关键。 依据课标,根据本节课内容和学生的实际,我确定如下教学目标。 三、教学目标 知识与技能 通过“五点作图法”正确找出函数ysinx到ysin(x+)的图象变换规律,能用五点作图法和图象变换法画出函数yAsin(x+)的简图,能举一反三地画出函数yAsin(x+)k和yAcos(x+)的简图。 过程与方法 通过引导学生对函数ysinx到ysin(x+)的图象变换规律的探索,让学生体会到由简单到复杂,特殊到一般的化归思想;并通过对周期变换、相位变换先后顺序调整后,将影响图象变换这一难点的突破,让学生学会抓住问题的主要矛盾来解决问题的基本思想方法。 情感态度与价值观 课堂中,通过对问题的自主探究,培养学生的独立意识和独立思考能力;小组交流中,学会合作意识;在解决问题的难点时,培养学生解决问题抓主要矛盾的思想。在问题逐步深入的研究中唤起学生追求真理,乐于创新的情感需求,引发学生渴求知识的强烈愿望,树立科学的人生观、价值观。 四、教学过程(六问三练) 1、设置情境 函数y=Asin(x+)的图象(第二课时)说课稿。 17

    注意事项

    本文(实用的高中数学说课稿合集6篇.docx)为本站会员(可****)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开