2021-2022学年人教版初中数学七年级下册第九章不等式与不等式组专题练习试卷(精选).docx
-
资源ID:57440282
资源大小:384.72KB
全文页数:20页
- 资源格式: DOCX
下载积分:8金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2021-2022学年人教版初中数学七年级下册第九章不等式与不等式组专题练习试卷(精选).docx
初中数学七年级下册第九章不等式与不等式组专题练习(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(10小题,每小题3分,共计30分)1、已知,为实数,下列说法:若,且,互为相反数,则;若,则;若,则;若,则是正数;若,且,则,其中正确的说法有个A2B3C4D52、若不等式(a+1)x>2的解集为x<,则a的取值范围是( )Aa<1Ba<-1Ca>1Da>-13、下列语句中,是命题的是()若160°,260°,则12;同位角相等吗?画线段ABCD;如果ab,bc,那么ac;直角都相等ABCD4、下列命题是真命题的是( )A若,则为坐标原点B若,且平行于轴,则点坐标为C点关于原点对称的点坐标是D若关于一元一次不等式组无解,则的取值范围是5、若a+b+c0,且|a|b|c|,则下列结论一定正确的是()Aabc0Babc0CacabDacab6、若关于x的分式方程+1有整数解,且关于y的不等式组恰有2个整数解,则所有满足条件的整数a的值之积是()A0B24C72D127、不等式组的解集在数轴上表示正确的是( )ABCD8、关于的不等式组有解且不超过3个整数解,若,那么的取值范围是( )ABCD9、对于不等式4x+7(x-2)8不是它的解的是( )A5B4C3D210、已知关于x的不等式组的解集中任意一个x的值均不在1x3的范围内,则a的取值范围是()A5a6Ba6或a5C5a6Da6或a5二、填空题(5小题,每小题4分,共计20分)1、用不等式表示:x的4倍与y的和不小于300_2、把一堆花生分给一群猴子,如果每只猴子分3颗,就剩8颗;如果每只猴子分5颗,那么最后一只猴子分到的花生不足5颗求猴子的只数与花生的颗数分别为_3、假设ab,请用“”或“”填空(1)a-1_b-1; (2)2a_2b;(3)_; (4)a+1_b+14、已知那么|x-3|+|x-1|=_5、根据“3x与5的和是负数”可列出不等式 _三、解答题(5小题,每小题10分,共计50分)1、学校计划开展暑期实践活动,由一个带队老师和若干同学,共x人参加有甲乙两个旅行社可供选择两个旅行社的原价均为100元/人,现都推出优惠措施:甲旅行社:参团人员每人打七五折(原价的75%)乙旅行社:带队老师免费,学生每人打八折(原价的80%)(1)请你用含有x的代数式分别表示甲乙两个旅行社的总费用:甲: 元;乙: 元(2)当学生人数为20人时,请你分别计算甲乙两个旅行社的总费用;(3)你认为学校选用哪个旅行社花费更少?请直接写出答案2、求不等式6411x4的正整数解3、解下列不等式(组)(1)5x3(x2)+2(2)4、定义:如果一元一次方程的解也是一元一次不等式组的解,则称该一元一次方程为该不等式组的“相伴方程”例如:方程2x60的解为x3,不等式组的解集为2x5因为235所以称方程2x60为不等式组的相伴方程(1)若关于x的方程2xk2是不等式组的相伴方程,求k的取值范围;(2)若方程2x+40,1都是关于x的不等式组的相伴方程,求m的取值范围;(3)若关于x的不等式组的所有相伴方程的解中,有且只有2个整数解,求n的取值范围5、解不等式组,并写出所有整数解-参考答案-一、单选题1、C【分析】除0外,互为相反数的商为,可作判断;由两数之和小于0,两数之积大于0,得到与都为负数,即小于0,利用负数的绝对值等于它的相反数化简得到结果,即可作出判断;由的绝对值等于它的相反数,得到为非正数,得到与的大小,即可作出判断;由绝对值大于绝对值,分情况讨论,即可作出判断;先根据,得,由和有理数乘法法则可得,分情况可作判断【详解】解:若,且,互为相反数,则,本选项正确;若,则与同号,由,则,则,本选项正确;,即,即,本选项错误;若,当,时,可得,即,所以为正数;当,时,所以为正数;当,时,所以为正数;当,时,所以为正数,本选项正确;,当时,不符合题意;所以,则,本选项正确;则其中正确的有4个,是故选:【点睛】本题考查了相反数,不等式的性质,绝对值和有理数的混合运算,熟练掌握各种运算法则是解本题的关键2、B【分析】根据不等式的性质可得,由此求出的取值范围【详解】解:不等式的解集为,不等式两边同时除以时不等号的方向改变,故选:B【点睛】本题考查了不等式的性质,解题的关键是掌握在不等式的两边同时乘以(或除以)同一个负数不等号的方向改变3、A【分析】根据命题的定义分别进行判断即可【详解】解:若160°,260°,则12,是命题,符合题意;同位角相等吗?是疑问句,不是命题,不符合题意;画线段ABCD,没有对事情作出判断,不是命题,不符合题意;如果ab,bc,那么ac,是命题,符合题意;直角都相等,是命题,符合题意,命题有故选:A【点睛】本题考查了命题与定理:判断事物的语句叫命题,命题有题设与结论两部分组成;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理4、C【分析】分析是否为真命题,需要分析各题设是否能推出结论,若能推出结论即为真命题,反之即为假命题【详解】解:A. 若,则可为轴上的点或轴上的点或坐标原点,故该选项为假命题不符合题意;B. 若,且平行于轴,则点坐标为或,故该选项为假命题不符合题意;C. 点关于原点对称的点坐标是是真命题,故该选项符合题意;D. 若关于一元一次不等式组无解,则的取值范围是,故该选项为假命题不符合题意故选:C【点睛】本题主要考查了真命题与假命题,以及平面直角坐标系和一元一次不等式组的相关知识,熟练掌握平面直角坐标系和一元一次不等式组的运用是解答此题的关键5、C【分析】由的绝对值最小,分析不符合题意,再由 分析可得中至少有一个负数,至多两个负数,再分情况讨论即可得到答案.【详解】解: a+b+c0,且|a|b|c|,当时,则 则 不符合题意; 从而:中至少有一个负数,至多两个负数,当 且|a|b|c|, 此时B,C成立,A,D不成立,当 且|a|b|c|, 此时A,C成立,B,D不成立,综上:结论一定正确的是C,故选C【点睛】本题考查的是绝对值的含义,有理数的和的符号的确定,有理数积的符号的确定,利用数轴表示有理数,扎实的基础知识是解题的关键.6、D【分析】根据分式方程的解为正数即可得出a1或3或4或2或6,根据不等式组有解,即可得出1+y,找出31+2中所有的整数,将其相乘即可得出结论【详解】先解分式方程,再解一元一次不等式组,进而确定a的取值解:+1,x+x22ax2x+ax2+2(2+a)x4x 关于x的分式方程+1有整数解,2+a±1或±2或±4且2a1或3或4或2或62(y1)+a15y,2y2+a15y2y5y1a+23y3ay1+2y+10,2y1y1+y关于y的不等式组恰有2个整数解,31+26a3又a1或3或4或2或6,a3或4所有满足条件的整数a的值之积是3×(4)12故选:D【点睛】本题考查了分式方程的解以及解一元一次不等式,根据分式方程的解为正数结合不等式组有解,找出31+2是解题的关键7、C【分析】根据不等式组的解集的表示方法即可求解【详解】解:不等式组的解集为故表示如下:故选:C【点睛】本题考查的是一元一次不等式组的解集的表示方法,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键8、C【分析】先解不等式组,在根据不超过3个整数解,确定的取值范围,即可得出结论【详解】解:,解不等式得,解不等式得,因为不等式组有解,故解集为:,因为不等式组有不超过3个整数解,所以,把代入,解得,故选:C【点睛】本题考查了一元一次不等式组的整数解问题,解题关键是熟练解不等式组,根据有解和整数解的个数列出不等式组9、D【分析】根据不等式的解的含义把每个选项的数值代入不等式的左边进行计算,满足左边大于右边的是不等式的解,不满足左边大于右边的就不是不等式的解,从而可得答案.【详解】解:当x5时,4x+7(x-2)418,当x4时,4x+7(x-2)308,当x3时,4x+7(x-2)198,当x2时,4x+7(x-2)8故知x2不是原不等式的解故A,B,C不符合题意,D符合题意,故选D【点睛】本题考查的是不等式的解的含义,理解不等式的解的含义并进行判断是解本题的关键.10、B【分析】根据解不等式组,可得不等式组的解集,根据不等式组的解集是与1x3的关系,可得答案【详解】解:不等式组,得a3xa+4,由不等式组的解集中任意一个x的值均不在1x3的范围内,得a+41或a33,解得a5或a6,故选:B【点睛】本题考查了不等式的解集,利用解集中任意一个x的值均不在1x3的范围内得出不等式是解题关键二、填空题1、【分析】首先表示“x的4倍与y的和”为4x+y,再表示“不小于300”可得结论【详解】解:x的4倍为4x,则x的4倍与y的和为4x+y,再表示“不小于300”可得:,故答案为:【点睛】此题主要考查了列一元一次不等式,关键是要抓住题目中的关键词,如“大于(小于)、不超过(不低于)、是正数(负数)”“至少”、“最多”等等,正确选择不等号2、5只和23颗或6只和26颗【分析】设猴子的只数为x只,根据题意列出不等式组,求整数解即可【详解】解:设猴子的只数为x只,根据题意列出不等式组得,解得,因为x为整数是,所以,或,花生的颗数为颗或颗故答案为:5只和23颗或6只和26颗【点睛】本题考查了一元一次不等式组的应用,解题关键是准确把握题目中的不等量关系,列出不等式组3、 【分析】(1)根据不等式的性质:两边同时减去一个数,不等号方向不变号,即可得;(2)根据不等式的性质:两边同时乘以一个正数,不等号方向不变号,即可得;(3)根据不等式的性质:两边同时乘以一个负数,不等号方向变号,即可得;(4)根据不等式的性质:两边同时加上一个数,不等号方向不变号,即可得【详解】解:(1),;(2),;(3),;(4),;故答案为:;【点睛】题目主要考查不等式的基本性质,熟练掌握不等式的基本性质是解题关键4、2【分析】先求出不等式组的解集,再根据x的取值化简绝对值即可求解【详解】解:解不等式得, 解不等式得, 不等式组的解集为: ,x-30,x-10, 故答案为:2【点睛】本题考查了求不等式组的解集和绝对值的化简,正确求出不等式组的解集,正确化简绝对值是解题关键5、【分析】3x与5的和为,和是负数即和小于0,列出不等式即可得出答案【详解】3x与5的和是负数表示为故答案为:【点睛】本题考查列不等式,根据题目信息确定不等式是解题的关键三、解答题1、(1) ; ;(2)甲旅行社的总费用1575元,乙旅行社的总费用1600元;(3)当 时,两家旅行社的费用一样;当 时,乙旅行社的花费更少;当 时,甲旅行社的花费更少【解析】【分析】(1)根据题意分别列出代数式,表示出两家旅行社的总费用,即可求解;(2)当学生人数为20人时,分别计算甲乙两个旅行社的总费用,即可求解;(3)分三种情况讨论,即可求解【详解】解:(1)甲旅行社的总费用: 元,乙旅行社的总费用: 元;(2)当学生人数为20人时,甲旅行社的总费用:元,乙旅行社的总费用: 元;(3)当 ,即 时,两家旅行社的费用一样;当 ,即 时,乙旅行社的花费更少;当 ,即 时,甲旅行社的花费更少【点睛】本题主要考查了列代数式,一元一次方程和一元一次不等式的应用,明确题意,准确得到数量关系是解题的关键2、1,2,3,4,5【解析】【分析】先求出不等式的解集,再求出不等式的正整数解即可【详解】解:移项得:-11x4-64,合并同类项得:-11x-60,不等式的解集为x,正整数解为1,2,3,4,5【点睛】本题考查了解一元一次不等式和不等式的整数解,能求出不等式的解集是解此题的关键3、(1) ;(2)【解析】【分析】(1)先去括号,两边同时加上 ,得到,然后合并同类项,最后不等式两边同时除以2,即可求解;(2)分别解出两个不等式,即可求解【详解】解:(1)5x3(x2)+2去括号,得:,不等的两边同时加上 ,得:合并同类项,得: ,不等式两边同时除以2,得: ,所以不等式的解集为;(2)解不等式,得: ,解不等式 ,得: ,所以不等式组的解集为: 【点睛】本题主要考查了解一元一次不等式和一元一次不等式组,熟练掌握相关运算顺序是解题的关键4、(1)3k4;(2)2m3;(3)4n6【解析】【分析】(1)首先求出方程2xk2的解和不等式组的解集,然后根据“相伴方程”的概念列出关于k的不等式组求解即可;(2)首先求出方程2x+40,1的解,然后分m2和m2两种情况讨论,根据“相伴方程”的概念即可求出m的取值范围;(3)首先表示出不等式组的解集,然后根据题意列出关于n的不等式组求解即可【详解】解:(1)不等式组为,解得,方程为2xk2,解得x,根据题意可得,解得:3k4,故k取值范围为:3k4(2)方程为2x+40,解得:x2,x1;不等式组为,当m2时,不等式组为,此时不等式组解集为x1,不符合题意,应舍去;当m2时不等式组解集为m5x1,根据题意可得,解得2m3;故m取值范围为:2m3(3)不等式组为,解得1x,根据题意可得,3,解得4n6,故n取值范围为4n6【点睛】此题考查了新定义问题,一元一次方程和一元一次不等式组含参数问题,解题的关键是正确分析新定义的“相伴方程”概念,并列出方程求解5、不等式组的解集为:;整数解为:-1,0,1,2【解析】【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,从而而可得不等式组得整数解【详解】解:,解不等式得:,解不等式得:,不等式组的解集为:,不等式组的整数解为:-1,0,1,2【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键