2022年人教A版高中数学必修四《三角函数的图像与性质》1.4.1《正弦函数、余弦函数的图象》学案 .pdf
名师精编优秀教案学大教育广州技术有限公司佛山分公司高中数学必修4 三角函数的图像与性质 1.4.1 正弦函数、余弦函数的图象学案学习目标1、会用“五点法”和“几何法”画正弦函数、余弦函数的图,体会“几何法”作正弦函数图象的过程,提高动手能力;2、通过函数图象的应用,体会数形结合在解题中的应用;3、三角函数图象和图象的应用;自主梳理1 正弦函数(或余弦函数)的概念任意给定一个实数x,有唯一确定的值xsin(或xcos)与之对应,由这个对应法则所确定的函数xysin(或xycos)叫做正弦函数(或余弦函数),其定义域为。2 正弦曲线或余弦曲线正弦函数的图象和余弦函数的图象分别叫做和。3 用五点法作正弦函数和余弦函数的简图(描点法):(1)正弦函数2,0,sinxxy的图象中,五个关键点是:,。(2)余弦函数2,0,cosxxy的图象中,五个关键点是:,。预习检测1、函数)3sin(xy的定义域为 _;值域为 _ _;2、函数)3cos(2xy的定义域为 _;值域为 _;互动课堂问题探究1:【例】作出函数xycos31-1在2,2上的图像;【变式】)23sin(xy;问题探究2:名师精编优秀教案【例】已知23,2x,解不等式23sin x;【变式】已知Rx,解不等式23sin x;问题探究3:【例】求下列函数的值域:(1)xxysin|sin|(2)6,6),32sin(2xxy(3)1cos2cosxxy【变式】求函数,3,1sin4sin32xxxy的值域;问题探究4:【例】(1)讨论方程xxsinlg解的个数;(2)若函数2,0|,sin|2sin)(xxxxf与直 线ky有且仅有两个不同的交点,求k的取值范围;【变式】当k为何值时,方程kxx|sin|2sin有一解、三解、四解?课堂练习1、在同一坐标系内的函数xysin与xycos的图象的交点坐标是()AZkk),0,(B Zkk),1,22(C Zkkk),)1(,2(D Zkkk),2)1(,4(2、下面有四个判断:作正、余弦函数的图象时,单位圆的半径长与x轴上的单位长可以不一致;2,0,sinxxy的图象关于)0,(P成中心对称;2,0,cosxxy的图象关于直线x成轴对称;文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1名师精编优秀教案 正、余弦函数的图象不超过两直线1,1 yy所夹的范围。其中正确的有()A 1个 B 2个 C 3个 D 4个3、与图中曲线对应的函数是()xy12-OA xysin B xysin C xysin D xysin4、在)2,0(内,使xxcossin成立的x的取值范围是()A )45,()2,4(B ),4(C )45,4(D )23,45(),4(反思总结:1、这节课你学到了哪些知识和解题方法;2、这节课你学到了哪些数学思想方法?3、你还有哪些收获?选作:函数)(xfy的图象与直线bxax,及x轴所围成图形的面积成 为函数)(xf在,ba上的面积,已知函数nxysin在,0n上的面积为Nnn,2,则(1)函数xy3sin在32,0上的面积为 _;(2)函数1)3sin(xy在34,3上的面积为 _;文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1名师精编优秀教案答案1 41 正弦函数、余弦函数的图象自主梳理1、R2、正弦曲线余弦曲线3、(1))0,0(、)1,2(、)0,(、)1,23(、)0,2((2))1,0(、)0,2(、)1,(、)0,23(、)1,2(预习检测1、R 11,2、R22,互动课堂问题探究1:【例】图略【变式】图略问题探究2:【例】34,3【变式】Zkkk,342,32问题探究3:【例】(1)2,0(2)2,0(3)),23【变式】1,31问题探究4:【例】(1)3 个(2)31k【变式】一解:3k三解:10kk或四解:10k课堂练习1、D 2、C3、B 4、C 选作:3432文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1文档编码:CC1Q7A3I10T3 HE7E3Q3L7T5 ZO1P6H9K5L1