传质分离过程课后习题-答案~.doc
|第 1章 绪论略第二章习题1. 计算在 0.1013MPa和 378.47K下苯(1)-甲苯(2)-对二甲苯(3)三元系,当 x1 = 0.3125、 x2 =0.2978、 x3 =0.3897时的 K值。汽相为理想气体,液相为非理想溶液。并与完全理想系的 K值比较。已知三个二元系的 wilson方程参数(单位: J/mol ): 12 11=1035.33; 12 22=977.83 23 22=442.15; 23 33=460.05 13 11=1510.14; 13 33=1642.81在 T =378.4 K时液相摩尔体积(m 3/kmol)为: =100.91×10 -3 ; =177.55×10 -3 ; =136.69×10 -3 安托尼公式为( ps:Pa ; T:K ): 苯:1n =20.7936-2788.51/( T-52.36);甲苯:1n =20.9065-3096.52/( T-53.67); 对 -二甲苯:1n =20.989 1-3346.65/( T-57.84);解:由 Wilson方程得: 12= lV12exp-( 12- 11)/RT = 309.57×exp-(1035.33)/(8.314×378.47)=2.4450 21=0.4165 13=0.8382 31=1.2443 23=0.6689 32=1.5034 |ln 1=1-ln( 12X2+ 13X3)-323123213121 XXX A=0.054488 1=1.056同理, 2=1.029; 3=1.007 lnP1S=20.7936-2788.51/(378.47-52.36)=12.2428, P1S=0.2075Mpa lnP2S=20.9062-3096.52/(378.47-53.67)=11.3729, P2S=0.0869Mpa lnP3S=20.9891-3346.65/(378.47-57.84)=10.5514, P3S=0.0382Mpa 作为理想气体实际溶液, K1= PS=2.16, K2=0.88, K3=0.38003 若完全为理想系, K1=S=2.0484 K2=0.8578 K3=0.3771 2. 在 361K和 4136.8kPa下,甲烷和正丁烷二元系呈汽液平衡,汽相含甲烷0.60387%( mol ),与其平衡的液相含甲烷 0.1304%。用 R-K 方程计算 和 Ki值。解:a 11= 115.2478.0cpTR=3.222MPa dm6 k0.5 mol-2a22= 225.c=28.9926 MPadm6k0.5mol-2 b1= 110864.cpTR=0.0298 dm3mol-1 |b2= 225.478.0cpTR=0.0806 dm3mol-1其中 Tc1=190.6K, Pc1=4.60Mpa Tc2=425.5K, Pc2=3.80Mpa 均为查表所得。 a12=a 11a22=9.6651MPadm6k0.5mol-2液相: aa 11x12+2a12x1x2+a22x22 =3.22×0.13042+2×9.6651×0.1304×0.8696+28.9926×0.86962 =24.1711 b=b1x1+b2x2=0.0298×0.1304+0.0806×0.8696=0.0740 由 RK 方程: P=RT/(V-b)-a/T 0.5V(V+b)4.1368 074.36185.lmV )074.(125.0lmV解得 V ml=0.1349 ln l1=lnV/(V-b)+bi/(V-b)-2y iaij/bmRT1.5*ln(V+b)/V+abi/b2RT1.5 ln(V+b)/V-b/(V+b) -ln(PV/RT)ln l1=ln )074.39.1(+ 074.139.28 5.168.074. )22×ln( 130.749)+ 5.123.91×ln( .470) 074.3.-ln 3618.9.=1.3297 l1=3.7780 |同理 ln l2-1.16696, l2=0.3113 汽相:a 3.222×0.603872+2×9.6651×0.60387×0.39613+28.9926×0.396132 = 10.3484 b=0.0298×0.60387+0.0806×0.39613=0.0499 由 4.1368= 049.36185.vmV )049.(385.0vmV得 vm=0.5861 ln =ln( 049.5861.)+ 049.5861.2 v1 5.12.1 36084.49.931)5861.ln(3.049.237(2 ×ln 049.586.)586.(ln( 603.5) =0.0334942 故 1.0341 v1同理,ln l2-0.522819, l2=0.5928 故 K1=y1/x1=0.60387/0.1304=4.631 ( K1= l/ )v1K2y 2/x2 304.6870.45553. 乙酸甲酯(1)-丙酮(2)-甲醇(3)三组分蒸汽混合物的组成为y10.33, y20.34, y3=0.33(摩尔分率)。汽相假定为理想气体,液相活度系数用 Wilson方程表示,试求 50时该蒸汽混合物之露点压力。解:由有关文献查得和回归的所需数据为: 【P24 例 2-5,2-6】50时各纯组分的饱和蒸气压,kPa |P1S=78.049 P2S=81.848 P3S=55.581 50时各组分的气体摩尔体积,cm3/mol V1l=83.77 V2l=76.81 V3l=42.05 由 50时各组分溶液的无限稀释活度系数回归得到的 Wilson常数: 111.0 210.71891 310.57939 121.18160 221.0 320.97513 130.52297 230.50878 331.0 (1) 假定 x值, 取 x10.33,x 20.34,x 30.33。按理想溶液确定初值 p78.049×0.33+81.8418×0.34+55.581×0.33=71.916kPa (2) 由 x和 ij求 i 从多组分 Wilson方程 ln i=1-ln cjijx1)(-ckjkjjx1得 ln 1=1-ln(x1+ 12x2+ 13x3)- 3121x+ 3221x+ 3213x=0.1834 故 1=1.2013 同理, 2=1.0298 3=1.4181 (3) 求 Ki Ki=RTpVpsiLisi )(exK1= 96.704823exp 16.324.80)97(33=1.3035 同理 K21.1913 K 3=1.0963 |(4) 求x i x i= 305.1+ 71.4+ 0963.=0.8445 整理得 x 10.2998 x 2=0.3437 x3=0.3565 在 p71.916kPa 内层经 7次迭代得到:x10.28964, x 2=0.33891, x3=0.37145 (5) 调整 p pRTpVxsiLiisi )(e=p iK =71.916(1.3479×0.28964+1.18675×0.33891+1.05085×0.37145) =85.072kPa 在新的 p下重复上述计算,迭代至 p达到所需精度。 最终结果:露点压力 85.101kPa 平衡液相组成: x10.28958 x 20.33889 x 30.37153 4. 一液体混合物的组分为:苯 0.50;甲苯 0.25;对-二甲苯 0.25(摩尔分数)。分别用平衡常数法和相对挥发度法计算该物系在 100kPa时的平衡温度和汽相组成。假设为完全理想物系。解:(1) 平衡常数法 因为汽相、液相均为完全理想物系,故符合乌拉尔定律 pyi=pisxi 而 Ki=ixy= psi|设 T为 80时 ,由安托尼公式(见习题 1)求出格组分的饱和蒸汽压。sp1101.29kPa, sp2=38.82kPa, sp3=15.63kPa 故 32y=K1x1+K2x2+K3x3 = ppsss= 25.016325.01835.0129=0.641 故所设温度偏高,重设 T为 91.19, sp1160.02kPa, sp2=56.34kPa, sp3=23.625kPa 32y1.00001251 故用平衡常数法计算该物系在 100kPa时的平衡温度为 91.19 汽相组成: 1y 1xK 1ps 5.0260.8001 2 2 2s .3450.1409 3y 3xK 3ps .016.0.059 (2)相对挥发度法 由于是理想混合物,所以)/(11iiixy, 得 )/(1iiixy对于理想混合物,得 i1 SPp2|设 T为 80时, sp1101.29kPa, Sp2=38.82kPa, sp3=15.63kPa 故 22.61, 136.48, 2y 1/5.22, 3y= 1/12.96 因为 1y1,故 10.788 又因为 p100×0.78878.8kPa,而 1xps101.29×0.550.645kPa1,故所设温度偏低 重设 T350.1K 时 BAix0.9921 故露点温度为 350.1K 8. 组成为 60 % 苯,25 %甲苯和 15 % 对-二甲苯(均为 mol百分数)的液体混合物 100kmol,在 101.3kPa和 100下闪蒸。试计算液体和气体产物的数量和组成。假设该物系为理想溶液。用安托尼方程计算蒸汽压。解:设苯为组分 1,甲苯为组分 2, 对二甲苯为组分 3。 100时, 【P33 例 2-7】sp1198.929kPa, sp2=74.165kPa, sp3=32.039kPa 对于低压气体,气相可视为理想气体,液相可视为理想溶液, 故 iK psi,得 1 ps1.964, 2K ps0.732, 3K ps0.316 (1) 核实闪蒸温度 假设 100为进料的泡点温度,则 )(izK1.964×0.6+0.732×0.25+0.316×0.151.41>1 假设 100为进料的露点温度,则