欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    信号与系统信号与系统信号与系统 (10).pdf

    • 资源ID:57972328       资源大小:392.28KB        全文页数:13页
    • 资源格式: PDF        下载积分:8金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要8金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    信号与系统信号与系统信号与系统 (10).pdf

    BEIJING JIAOTONG UNIVERSITYThe Course Group of Signals and Systems,Beijing Jiaotong University.P.R.CHINA.Copyright 2020Signals and Systems Complex frequency-domain analysis for systemss-domain description for C-T LTI systemsTransfer function and system propertiesImplementation structure for LTI systemss-domain analysis for LTI system responseThe differential equation describing a C-T LTI system in time-domaina ytayta y ta y tnnnn()()()()110()(1)b xtbxtb x tb x tmmmm()()()()110()(1)By the differentiation property of bilateral Laplace transform,we can obtain s-domain equation describing the LTI system()a sasa sa Y snnnn1101b sbsbsb X smmmm()1101s-domain description for C-T LTI systemsX sH sY s()()()The system transfer function H(s)is defined asa sasa sab sbsbsbnnnnmmmm11011101a sasa sa Y snnnn()1101b sbsbsb X smmmm()1101Definition of system transfer functionH(s)can describe causal systems and noncausal systemsH(s)is an important function describing the system in s-domain.The relationship between H(s)and h(t)X sH sY s()()()L LL Lth t()=()L Lh t()L Lh tH s()()-1)t(h)t(me t sySITL T-CThey are bilateral Laplace transform pairDefinition of system transfer functionFor a causal LTI system,its impulse response h(t)is causal.In this case,the unilateral and bilateral Laplace transform of causal h(t)is identical.X sH sYs()()()zsTherefore,for a causal LTI system,H(s)can be obtained byunilateral Laplace transform of input x(t)and output y(t).L Lh t()If the system is causal,we can use unilateral Laplace transform to find its H(s).Definition of system transfer function by impulse response h(t):by the differential equation describing the system by input x(t)and output y(t):The main methods of determining H(s)L LL Lx tH sy t()()=()a sasa saH sb sbsbsbnnnnmmmm()11011101H(s)=L L h(t)Definition of system transfer functionSolution:(1)The relationship of input and output for the integrator isTherefore,the transfer function H(s)for the integrator is y txxtt()()d=()(1)L LsH sh t()()1The impulse response h(t)is h ttu t()()()(1)Example 6.20:Determine H(s)for the ideal integrator and differentiator.()d()dy tx ttth tttd()=()d()L LH sh ts()()Solution:(1)The relationship of input and output for the differentiator isTherefore,the transfer function H(s)for the differentiator is The impulse response h(t)is Example 6.20:Determine H(s)for the ideal integrator and differentiator.Another Way?Example 6.21:In the RC circuit,input signal is x(t),output signal is y(t),and initial voltage y(0)is zero.Determine H(s)and h(t)。C)t(x+)t(yR-+The circuit is a causal LTI system,we can use unilateral Laplace transform to determine the transfer function H(s).X sH sYs()()()zsSolution:Cs/1)s(X+)s(YR-+s-domain circuit with y(0)=0Time-domain circuitBy the inversion of unilateral Laplace transform,we can get h(t)RC th tRCu t(1/)()1e()According to the circuit model in s-domain and Kirchhoffs voltage law,we can obtainX sH sYs()()()zssCRsC11/sRCRC1/1/Example 6.21:In the RC circuit,input signal is x(t),output signal is y(t),and initial voltage y(0)is zero.Determine H(s)and h(t)。Cs/1)s(X+)s(YR-+s-domain circuit with y(0)=0Example 6.22:the differential equation for a causal LTI system is as y(t)+3y(t)+2y(t)=3x(t)+2x(t)Determine its H(s)and h(t)。Solution:As the system is causal,we can apply the unilateral Laplace transform.The transfer function H(s)for the causal LTI system is By inversion of unilateral Laplace transform,we can determine h(t)ssYssX s2zs(32)()(23)()sssX sH sYs(3)2)()23(2zsss2e(s)11R,11h tu ttt()(ee)()2The largest real part of polesAcknowledgmentsMaterials used here are accumulated by authors for years with helpfrom colleagues,media or other sources,which,unfortunately,cannotbe noted specifically.We gratefully acknowledge those contributors.s-domain description for LTI systems

    注意事项

    本文(信号与系统信号与系统信号与系统 (10).pdf)为本站会员(刘静)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开