(6.4.1)--Chapter6-4Recommendationsystem2.pdf
-
资源ID:57972581
资源大小:898.18KB
全文页数:11页
- 资源格式: PDF
下载积分:10金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
(6.4.1)--Chapter6-4Recommendationsystem2.pdf
Haiying CheInstitute of Data Science and Knowledge EngineeringSchool of Computer ScienceBeijing Institute of TechnologyRecommendation System-Part 22Recommendation AlgorithmsMain AlgorithmsNeighborhood-basedUser-based FilteringItem-based Filtering1 Collaborative Filtering2 Content Based Filtering3 Knowledge BasedModel-basedMatrix Factorizationlatent Dirichlet allocation(LDA)Structured FeatureUnstructured FeatureLatent Factor modelGraph model.3Lets watch a video“How Recommender Systems Work(NetflixAmazon)”4LFM(Latent factor model)Find some character the items may haveDecompose the rating matrix into item-character rating&user-character ratingAbstract model:just suppose the number of character5SVD(Singular Value Decomposition)The linear algebra method used to decompose matrices Suppose the rating matrix is m:Compute the eigenvalue&eigenvector of&U matrix:the matrix of the eigenvectors of V matrix:the matrix of the eigenvectors of matrix:the square root of eigenvalues of SVD is often denoted6Matrix Decomposition SVD requires dense matrix,that is the matrix dont have missing values.Evidently,user-item rating matrix has lots of missing values.MatrixDecompositionSVD7Matrix Decomposition =,where is user-item rating matrix,is user-LF matrix,and is item-LF matrix.For u-user and i-item,their rating is:8Calculate&Cost function:only calculate cost function with the already given rating values by the users.The first term is the MSE of the predict rating value and true value.And the second part is regular value,which prevent overfitting.9Minimize cost functionTwo ways to minimize cost function:1.ALS(Alternating Least Square):fix P,compute Q to make c min;then,fix Q,compute P to make c min;End until reach max iteration or c satisfies threshold condition.Compute,and make the formula equals to 0,get.Similarly get.2.Gradient Descent Computeand .Iteration:is step size.iu u-10Hands-on1 User based RecommendationLoad&Relate two tables1.1 Preprocessing1.2 Collaborative FilteringCreate DictionarySimilarity ComputingList top-10Recommendation2 Matrix DecompositionImport LibraryDatasetModelsGoalProcess-Import library-import data-Grid search SVD training-Use the best parameters obtained by grid search for training and prediction-Result visualization-Train and test on the best model-Get the best parameters for SVD,Funk or Bias SVD,Grid Search for training100,000 users ratings on moviesSurpriseCreate new data.csvQuestions?