欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    (5.15.1)--Chapter5-6Inmemorycomputing-Spar.pdf

    • 资源ID:57972777       资源大小:918.54KB        全文页数:13页
    • 资源格式: PDF        下载积分:10金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要10金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    (5.15.1)--Chapter5-6Inmemorycomputing-Spar.pdf

    In memory Computing-Spark2Data Processing System Architecture Computing algorithmComputing ModelData processing systemComputing Platform&EngineComputing Platforms that provide various development kits and operating environmentsData storing systemData application systemComputing Models for different types of data,such as 1.Batch Processing Model for massive data,MapReduce2.Stream Computing model for dynamic data streams,3.Large-scale concurrent processing(MPP)model for structured data4.large-scale physical memory In-memory Computing model;5.Data Flow Graph model;Computing Engine Hadoop,Spark,Storm,etc34L3-SparkSpark was initially started by Matei Zaharia at UC Berkeleys AMP Lab in 2009,and open sourced in 2010.In 2013,donated to the Apache Software Foundation.one of the most active open source big data projects,Top-Level Apache ProjectParallel processing framework based on the memory computing model.It can be built on the Hadoop platform and use the HDFS file system to store data,but a Resilient Distributed dataset(RDD)architecture is built on top of the file system for Supports efficient Distributed Memory Computing.5What is Spark6RDD(Resilient Distributed Dataset)78Spark Driver(running on the Master node,there is also a mode of running on a Worker node)and Executor(running on the Worker node):Driver is responsible for converting the computing tasks of the application into a directed acyclic graph(DAG)Executor is responsible for completing the calculation and data storage on the worker node On each worker,the Executor generates task threads for each data partition distributed to it to complete parallel calculations.9Features of Sparktransform the whole dataset but not individual element on the datasetsave the result of RDD evaluationstores the intermediate result so that we can use it further RDDs are the huge collection of various data items,cannot fit into a single node and must be partitioned across various nodesCreated data can be retrieved anytime but its value cant be changedRDDs track data lineage information to reconstruct lost data automaticallyIt doesnt compute the result immediately means that execution does not start until an action is triggered.When we call some operation in RDD for transformation,it does not execute immediately.Computed results are stored in distributed memory(RAM)instead of stable storage(disk).10Spark Components 11Spark Advantages Fast processing Flexibility In-memory computing Real-time processing Better analytics12Spark ecosystemQuestions?

    注意事项

    本文((5.15.1)--Chapter5-6Inmemorycomputing-Spar.pdf)为本站会员(刘静)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开