欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    分数域信号与信息处理及其应用 (7).pdf

    • 资源ID:57974539       资源大小:163.13KB        全文页数:3页
    • 资源格式: PDF        下载积分:8金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要8金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    分数域信号与信息处理及其应用 (7).pdf

    IEEE SIGNAL PROCESSING LETTERS,VOL.4,NO.1,JANUARY 199715Product and Convolution Theoremsfor the Fractional Fourier TransformLu s B.Almeida,Associate Member,IEEEAbstractThe fractional Fourier transform(FRFT)is a gener-alization of the classical Fourier transform(FT).It has recentlyfound applications in several areas,including signal processingand optics.Many properties of this transform are already known,but an extension of the FTs convolution theorem is still missing.The purpose of this paper is to introduce extensions of thistheorem,dealing with the FRFT of a product and of a convolutionof two functions.I.INTRODUCTIONTHE fractional Fourier transform(FRFT)was introducedin the 1920s 1,2 but remained largely unknown,andwas reinvented several times 311.Recently,it has foundapplications in various fields including signal processing andoptics.Many properties of the FRFT are currently known.However,extensions of the convolution theorem for the frac-tional Fourier transform are still unknown.It is the purpose ofthis paper to introduce two such extensions,dealing with thetransforms of a product and of a convolution of two functions.The paper is organized as follows.In Section II we make avery brief introduction to the FRFT to situate the problem andto introduce the notation.In Section III we derive expressionsfor the transform of a product of two functions.In SectionIV we derive expressions for the transform of a convolution.In Section V we extend these results to a more general form.Section VI concludes.II.THEFRACTIONALFOURIERTRANSFORMThe fractional Fourier transform is defined inas(1),shown at the bottom of the next page,whereis a parameter;is the imaginary unit.The FRFT can be interpreted as a rotationof the timefrequency plane by an angle79,and hassome notable properties,among which are the following:The FRFT withcoincides with the Fouriertransform(FT)1.The FRFT withis an identity.Two successive FRFTs with anglesandare equiva-lent to a single FRFT with an angle The inverse of an FRFT with an angleis the FRFTwith angleManuscript received November 29,1995.The associate editor coordinatingthe review of this manuscript and approving it for publication was Prof.D.L.Jones.The author is with the Instituto Superior T ecnico and INESC,Lisboa,Portugal(e-mail:luis.almeidainesc.pt).Publisher Item Identifier S 1070-9908(97)01273-X.1Some authors use as parameter?instead of?so that the FT isobtained for?From the definition above,we see that the FRFT exists,fornot multiple ofwhenever the Fourier transform ofexists.Since the complex exponential in thisexpression has constant magnitude,the FRFT can also bedefined in most domains in which the FT can be defined,notably inin the Wiener algebra(the set of Fouriertransforms of functions inand in the set of tempereddistributions.In this paper,we denote by the square root symbolthesquare root that has an argument inand we definethe Fourier transform asIn what follows,we shall only consider functions in(i.e.functions inwith Fourier transforms also infor simplicity.The results that we obtain could beextended to wider domains,but the treatment of such caseswould need a longer paper.The derivations that follow are notvalid when the transform angles take certain values that aremultiples ofThese cases are explicitly noted in the end ofthe derivations only,for simplicity.The correct results for suchcases can be easily obtained by the reader,if desired,sincethey correspond to known situations;in those cases the FRFTis simply a Fourier transform,a time reversal,a combinationof both or an identity.III.THETRANSFORM OF APRODUCTLet us consider two functions,and makeThe functionis inand thus its FRFT is given by(1),shown at the botom of the next page.Let us computeexpressingin terms of its FRFT,as follows:10709908/97$10.00 1997 IEEE16IEEE SIGNAL PROCESSING LETTERS,VOL.4,NO.1,JANUARY 1997or finally,(2)whereis the FT ofThe latter equation gives the resultwe want:the FRFT of the product ofandis obtainedby multiplying the FRFT ofby a chirp,convolving with the(scaled)FT ofand multiplying again by a chirp and by ascale factor.Other useful forms of this result can be obtained throughchanges of the integration variable.We first make the changeresulting in(3)We then make the further changeresulting in(4)Equations(2)(4)are valid ifis not a multiple ofOfcourse,the roles ofandcan be interchanged.In SectionV we will see how to extend these results to a more general,albeit more complex,form.IV.THETRANSFORM OF ACONVOLUTIONLet us again take two functionsandboth inTheir convolutionis inthuswhereandare inWe know thatis theFRFT ofwith angleWe can therefore use(2)to obtain(5)which is our first expression for the transform of a convolution.The FRFT of a convolution can therefore be obtained bytaking the FRFT of one of the signals,multiplying by a chirp,convolving with a scaled version of the other signal,andmultiplying again by a chirp and by a scale factor.This expression can take some other forms,which may befound useful.The first is obtained by making the change ofvariableresulting in(6)For the second one,we make the further change of variableobtaining(7)Equations(5)(7)are valid ifis not a multiple ofV.MOREGENERALFORMSTo obtain a more general expression for the FRFT of aproduct,we make againassuming once more thatand we choosetwo anglesandsuch thatThenThe integral on the right hand side of this equation istimes the Fourier transform,with argumentof the product ofandThereforeHoweverifis not a multiple ofifif(1)ALMEIDA:FRACTIONAL FOURIER TRANSFORM17andcan be put in a similar form.Thereforeor finally(8)This result is valid ifandare not multiples ofTwospecial cases are notable.The caseresults inwhich is expression(2)with the change of variableThe caseresults in(4)withandinterchanged.The expressions of the transform of a convolution can alsobe generalized in the same way.Take againwithand follow the same path as in SectionIV,but using(8)instead of(2).The result is(9)The anglesandmust now be related byThis result is valid ifandare not multiples ofLike(8),(9)also has two notable special cases.Withwe obtainwhich is(5)with the change of variableWithwe obtain(7)withandinterchanged.VI.CONCLUSIONWe have introduced expressions for the FRFTs of a productand of a convolution of two functions.These expressionsare extensions of the convolution theorem of the FT to thefractional domain.ACKNOWLEDGMENTWe wish to acknowledge useful discussions with A.F.Santos regarding some validity aspects of the derivations.REFERENCES1 H.Weyl,“Quantenmechanik und gruppentheorie,”Ztsch.f.Physik,vol.46,pp.147,1927.2 N.Wiener,“Hermitian polynomials and Fourier analysis,”J.Math.Phys.MIT,vol.8,pp.7073,1929.3 E.U.Condon,“Immersion of the Fourier transfom in a continuousgroup of functional transformations,”in Proc.Nat.Acad.Sci.USA,vol.23,pp.158164,1937.4 A.L.Patterson,“FunctionspacesbetweencrystalspaceandFouriertransform space,”Z.Krist.,vol.112,pp.2232,1959.5 V.Bargmann,“On a Hilbert space of analytic functions and an asso-ciated integral transform,part I,”Commun.Pure Appl.Math.,vol.14,pp.187214,1961.6 V.Namias,“The fractional Fourier transform and its application toquantum mechanics,”J.Inst.Math.Appl.,vol.25,pp.241265,1980.7 L.B.Almeida,“An introduction to the fractional Fourier transform,”inProc.1993 IEEE Int.Conf.Acoust.,Speech,Signal Processing,vol.III,Apr.1993,pp.257260.8,“The fractional Fourier transform and time-frequency repre-sentations,”IEEE Trans.Signal Processing,vol.42,pp.30843091,1994.9 A.W.Lohmann,“Image rotation,Wigner rotation,and the fractionalFourier transform,”J.Opt.Soc.Amer.,vol.10,pp.21812186,1993.10 D.Mendlovic and H.M.Ozatkas,“Fractional Fourier transforms andtheir optical implementation,”J.Opt.Soc.Amer.,vol.A 10,pp.18751881,25222531,1993.11 O.Seger,“Model building and restoration with applications in confocalmicroscopy,”Ph.D.dissertation,Link oping Univ.,Sweden,1993.

    注意事项

    本文(分数域信号与信息处理及其应用 (7).pdf)为本站会员(刘静)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开