欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    必修二空间点直线平面之间的位置关系教案.doc

    • 资源ID:57976745       资源大小:751.50KB        全文页数:49页
    • 资源格式: DOC        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    必修二空间点直线平面之间的位置关系教案.doc

    第二章 点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系教案 A第1课时教学内容:2.1.1 平面教学目标一、知识及技能 1. 利用生活中的实物对平面进展描述,掌握平面的表示法及水平放置的直观图;2. 掌握平面的根本性质及作用,提高学生的空间想象能力.二、过程及方法 在师生的共同讨论中,形成对平面的感性认识.三、情感、态度及价值观通过实例认识到我们所处的世界是一个三维空间,进而增强了学习的兴趣.教学重点、难点教学重点:1. 平面的概念及表示;2. 平面的根本性质,注意它们的条件、结论、作用、图形语言及符号语言.教学难点:平面根本性质的掌握及运用.教学关键:让学生理解平面的概念,熟记平面的性质及性质的应用,使学生对平面的概念及其性质由感性认识上升到理性认识.教学突破方法:对三个公理要结合图形进展理解,清楚其用途.教法及学法导航教学方法:探究讨论,讲练结合法学习方法:学生通过阅读教材,联系身边的实物思考、交流,师生共同讨论等,从而较好地完本钱节课的教学目标.教学准备教师准备:投影仪、投影片、正长方形模型、三角板学生准备:直尺、三角板教学过程教学过程教学内容师生互动设计意图创设情境 导入新课什么是平面?一些能看得见的平面实例.师:生活中常见的如黑板、桌面等,给我们以平面的印象,你们能举出更多例子吗?那么平面的含义是什么呢?这就是我们这节课所要学习的内容.形成平面的概念 续上表主题探究 合作交流1. 平面含义随堂练习 判定以下命题是否正确:书桌面是平面; 8个平面重叠起来要比6个平面重叠起来厚;有一个平面的长是50m,宽是20m;平面是绝对的平,无厚度,可以无限延展的抽象的数学概念.师:以上实物都给我们以平面的印象,几何里所说的平面,就是从这样的一些物体中抽象出来的,但是,几何里的平面是无限延展的.加强对知识的理解培养,自觉钻研的学习习惯.数形结合,加深理解.主题探究 合作交流2. 平面的画法及表示1平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成45°,且横边画成邻边的2倍长如图DCBA如果几个平面画在一起,当一个平面的一局部被另一个平面遮住时,应画成虚线或不画打出投影片2平面通常用希腊字母、等表示,如平面、平面等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC、平面ABCD等.3平面内有无数个点,平面可以看成点的集合.点A在平面内,记作:A; 点B在平面外,记作:B 师:在平面几何中,怎样画直线?一学生上黑板画之后教师加以肯定,讲解、类比,将知识迁移,得出平面的画法:·A·B通过类比探索,培养学生知识迁移能力,加强知识的系统性. 续上表主题探究 合作交流3. 平面的根本性质公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内C·B·A·符号表示为ALBL LAB公理1:判断直线是否在平面内公理2:过不在一条直线上的三点,有且只有一个平面.·BLA·符号表示为:A、B、C三点不共线  有且只有一个平面,使A、B、C.公理2作用:确定一个平面的依据.P·L公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.符号表示为:P =L,且PL公理3作用:判定两个平面是否相交的依据.教师引导学生思考教材P41的思考题,让学生充分发表自己的见解.师:把一把直尺边缘上的任意两点放在桌边,可以看到,直尺的整个边缘就落在了桌面上,用事实引导学生归纳出公理1教师引导学生阅读教材P42前几行相关内容,并加以解析师:生活中,我们看到三脚架可以结实地支撑照相机或测量用的平板仪等等引导学生归纳出公理2教师用正长方形模型,让学生理解两个平面的交线的含义.注意:1公理中“有且只有一个的含义是:“有,是说图形存在,“只有一个,是说图形唯一,“有且只有一个平面的意思是说“经过不在同一直线上的三个点的平面是有的,而且只有一个,也即不共线的三点确定一个平面.“有且只有一个平面也可以说成“确定一个平面.引导学生阅读P42的思考题,从而归纳出公理3通过类比探索,培养学生知识迁移能力,加强知识的系统性. 续上表拓展创新 应用提高4. 教材P43 例1通过例子,让学生掌握图形中点、线、面的位置关系及符号的正确使用.教师及时评价和纠正同学的表达方法,标准画图和符号表示.稳固提高小结1平面的概念,画法及表示方法.2平面的性质及其作用3符号表示4考前须知学生归纳总结、教师给予点拨、完善并板书.培养学生归纳整合知识能力,以及思维的灵活性及严谨性.课堂作业 1. 以下说法中,1铺得很平的一张白纸是一个平面;2一个平面的面积可以等于6cm2;3平面是矩形或平行四边形的形状. 其中说法正确的个数为 A. 0 B. 1 C. 2 D. 3 2. 假设点A在直线b上,在平面内,那么A,b,之间的关系可以记作 A . AÎbÎb B. AÎbÌb C. AÌbÌb D. AÌbÎb 3. 图中表示两个相交平面,其中画法正确的选项是 A B C D4. 空间中两个不重合的平面可以把空间分成 局部.答案:1.A 2. B 3.D 4. 3或4第2课时教学内容2.1.2 空间中直线及直线之间的位置关系教学目标一、知识及技能1. 了解空间中两条直线的位置关系;2. 理解异面直线的概念、画法,提高空间想象能力;3. 理解并掌握公理4和等角定理;4. 理解异面直线所成角的定义、范围及应用.二、过程及方法1. 经历两条直线位置关系的讨论过程,掌握异面直线所成角的根本求法.2. 体会平移不改变两条直线所成角的根本思想和方法.三、情感、态度及价值观感受到掌握空间两直线关系的必要性,提高学习兴趣.教学重点、难点教学重点1. 异面直线的概念.2. 公理4及等角定理.教学难点异面直线所成角的计算.教学关键提高学生空间想象能力,结合图形来判断空间直线的位置关系,使学生掌握两异面直线所成角的步骤及求法.教学突破方法结合图形,利用不同的分类标准给出空间直线的位置关系,由两异面直线所成角的定义求其大小,注意两异面直线所成角的范围.教法及学法导航教学方法探究讨论法学习方法学生通过阅读教材、思考及教师交流、概括,从而较好地完成教学目标.教学准备教师准备投影仪、投影片、长方体模型、三角板学生准备三角板.教学过程 详见下表.教学环节教学内容师生互动设计意图创设情境导入新课异面直线的概念:不同在任何一个平面内的两条直线叫做异面直线.通过身边实物,相互交流异面直线的概念师:空间两条直线有多少种位置关系?设疑激趣点出主题探索新知1. 空间的两条直线的位置关系相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线:不同在任何一个平面内,没有公共点.异面直线作图时通常用一个或两个平面衬托,如以下图:教师给出长方体模型,引导学生得出空间的两条直线有如下三种关系教师再次强调异面直线不共面的特点多媒体演示提高上课效率.师生互动,突破重点.探索新知2. 平行公理思考:长方体ABCD-A'B'C'D'中,BB'AA',DD'AA',那么BB'及DD'平行吗?公理4:平行于同一条直线的两条直线互相平行.符号表示为:设a、b、c是三条直线如果a/b,b/c, 那么a/c.例2空间四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点求证:四边形EFGH是平行四边形.师:在同一平面内,如果两条直线都及第三条直线平行,那么这两条直线互相平行.在空间中,是否有类似的规律?生:是强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用例2的讲解让学生掌握了公理4的运用续上表探索新知3. 思考:在平面上,我们容易证明“如果一个角的两边及另一个角的两边分别平行,那么这两个角相等或互补.空间中,结论是否仍然成立呢?等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.让学生观察、思考:ADC及ÐA'D'C'、ADC及A'B'C'的两边分别对应平行,这两组角的大小关系如何?生:ADC =Ð A'D'C',ADC + A'B'C' = 180°教师画出更具一般性的图形,师生共同归纳出如下等角定理等角定理为异面直线所成的角的概念作准备.探索新知探索新知4. 异面直线所成的角如图,异面直线a、b,经过空间中任一点O作直线a'a、b'b,我们把a'及b'所成的锐角或直角叫异面直线a及b所成的角夹角例3投影师: a'及b'所成的角的大小只由a、b的相互位置来确定,及O的选择无关,为了简便,点O一般取在两直线中的一条上; 两条异面直线所成的角0,; 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作ab; 两条直线互相垂直,有共面垂直及异面垂直两种情形; 计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角.以教师讲授为主,师生共同交流,导出异面直线所成的角的概念.例3让学生掌握了如何求异面直线所成的角,从而稳固了所学知识.续上表拓展创新 应用提高教材P49 练习1、2生完成练习,教师当堂评价.充分调动学生动手的积极性,教师适时给予肯定.小结本节课学习了哪些知识内容?2计算异面直线所成的角应注意什么?学生归纳,然后教师补充、完善小结知识,形成整体思维课堂作业1. 异面直线是指 A. 空间中两条不相交的直线 B. 分别位于两不同平面内的两条直线C. 平面内的一条直线及平面外的一条直线 D. 不同在任何一个平面内的两条直线2. 如右图所示,在三棱锥P-ABC的六条棱所在的直线中,异面直线共有 A. 2对 B. 3对 C. 4对 D. 6对3. 正方体ABCD-A1B1C1D1中及棱AA1平行的棱共有 A. 1条 B. 2条 C. 3条 D. 4条4. 空间两个角a、b,且a及b的两边对应平行,假设a=60°,那么b的大小为 .答案:1. D 2. B 3. C 4. 60°或120° 第3课时教学内容2.1.3 空间中直线及平面之间的位置关系 2.1.4 平面及平面之间的位置关系教学目标 一、知识及技能 1. 了解空间中直线及平面的位置关系,了解空间中平面及平面的位置关系;2. 提高空间想象能力.二、过程及方法 1. 通过观察及类比加深了对这些位置关系的理解、掌握;2. 利用已有的知识及经历归纳整理本节所学知识.三、情感、态度及价值观感受空间中图形的根本位置关系,形成严谨的思维品质.教学重点、难点教学重点空间直线及平面、平面及平面之间的位置关系.教学难点用图形表达直线及平面、平面及平面的位置关系.教学关键借助图形,使学生清楚直线及平面,平面及平面的分类标准,并能依据这些标准对直线及平面、平面及平面的位置关系进展分类及判定.教学突破方法恰当地利用图形,用符号语言表述直线及平面、平面及平面的位置关系.教法及学法导航教学方法借助实物,让学生观察事物、思考关系,讲练结合,较好地完本钱节课的教学目标.学习方法探究讨论,自主学习法.教学准备教师准备多媒体课件,投影仪,三角板,直尺.学生准备三角板,直尺教学过程详见下表.教学过程教学内容师生互动设计意图创设情境 导入新课问题1:空间中直线和直线有几种位置关系?问题2:一支笔所在的直线和一个作业本所在平面有几种位置关系?生1:平行、相交、异面; 生2:有三种位置关系:1直线在平面内;2直线及平面相交;3直线及平面平行师肯定并板书,点出主题.复习回忆,激发学习兴趣.主题探究 合作交流1直线及平面的位置关系.1直线在平面内有无数个公共点.2直线及平面相交有且仅有一个公共点.3直线在平面平行没有公共点.其中直线及平面相交或平行的情况,统称为直线在平面外,记作a.直线a在面内的符号语言是a.图形语言是:直线a及面相交的a= A.图形语言是符号语言是:直线a及面平行的符号语言是a. 图形语言是:师:有谁能讲出这三种位置有什么特点吗?生:直线在平面内时二者有无数个公共点.直线及平面相交时,二者有且仅有一个公共点.直线及平面平行时,三者没有公共点师板书师:我们把直线及平面相交或直线及平面平行的情况统称为直线在平面外.师:直线及平面的三种位置关系的图形语言、符号语言各是怎样的?谁来画图表示一个和书写一下.学生上台画图表示.师;好. 应该注意:画直线在平面内时,要把直线画在表示平面的平行四边形内;画直线在平面外时,应把直线或它的一局部画在表示平面的平行四边形外.加强对知识的理解培养,自觉钻研的学习习惯,数形结合,加深理解.续上表主题探究 合作交流2平面及平面的位置关系1问题1:拿出两本书,看作两个平面,上下、左右移动和翻转,它们之间的位置关系有几种?2问题2:如下图,围成长方体ABCD ABCD的六个面,两两之间的位置关系有几种?3平面及平面的位置关系平面及平面平行没有公共点.平面及平面相交有且只有一条公共直线.平面及平面平行的符号语言是.图形语言是:师:下面请同学们思考以下两个问题投影生:平行、相交.师:它们有什么特点?生:两个平面平行时二者没有公共点,两个平面相交时,二者有且仅有一条公共直线师板书师:下面请同学们用图形和符号把平面和平面的位置关系表示出来师:下面我们来看几个例子投影例1通过类比探索,培养学生知识迁移能力. 加强知识的系统性.续上表拓展创新 应用提高例1 以下命题中正确的个数是 B 假设直线l上有无数个点不在平面内,那么l.假设直线l及平面平行,那么l及平面内的任意一条直线都平行.如果两条平行直线中的一条及一个平面平行,那么另一条也及这个平面平行.假设直线l及平面平行,那么l及平面内的任意一条直线没有公共点.A. 0 B. 1 C. 2 D. 3例2 平面,直线a,求证a.证明:假设a不平行,那么a在内或a及相交.a及有公共点.又a.a及有公共点,及面面矛盾.学生先独立完成,然后讨论、共同研究,得出答案.教师利用投影仪给出示范.师:如图,我们借助长方体模型,棱AA1所在直线有无数点在平面ABCD外,但棱AA1所在直线及平面ABCD相交,所以命题不正确;A1B1所在直线平行于平面ABCD,A1B1显然不平行于BD,所以命题不正确;A1B1AB,A1B1所在直线平行于平面ABCD,但直线AB 平面ABCD,所以命题不正确;l及平面平行,那么l及无公共点,l及平面内所有直线都没有公共点,所以命题正确,应选B.师:投影例2,并读题,先让学生尝试证明,发现正面证明并不容易,然后教师给予引导,共同完成,并归纳反证法步骤和线面平行、面面平行的理解.例1 通过示范传授学生一个通过模型来研究问题的方法,加深对概念的理解.例2目标训练学生思维的灵活,并加深对面面平行、线面平行的理解. 小结1直线及平面、平面及平面的位置关系.2“正难到反数学思想及反证法解题步骤.3.“分类讨论数学思想学生归纳总结、教师给予点拨、完善并板书.培养学生整合知识能力,以及思维的灵活性及严谨性.课堂作业1. 直线及平面平行的充要条件是这条直线及平面内的 A一条直线不相交 B两条直线不相交C任意一条直线都不相交 D无数条直线都不相交【解析】直线及平面平行,那么直线及平面内的任意直线都不相交,反之亦然;故应选C.2.“平面内有无穷条直线都和直线l平行是“的 A充分而不必要条件 B必要而不充分条件C充分必要条件 D即不充分也不必要条件【解析】如果直线在平面内,直线可能及平面内的无穷条直线都平行,但直线不及平面平行,应选B.3如图,试根据以下要求,把被遮挡的局部改为虚线: 1AB没有被平面遮挡;2AB被平面遮挡.答案:略4,直线a,b,且,a,b,那么直线a及直线b具有怎样的位置关系?【解析】平行或异面5如果三个平面两两相交,那么它们的交线有多少条?画出图形表示你的结论.【解析】三个平面两两相交,它们的交线有一条或三条.6. 求证:如果过一个平面内一点的直线平行于及该平面平行的一条直线,那么这条直线在这个平面内.:l,点P,Pm,ml,求证:.证明:设l及P确定的平面为,且= m,那么lm.又知lm,由平行公理可知,m及m重合.所以.教案 B第1课时教学内容:2.1.1 平面教学目标1. 了解平面的概念,掌握平面的画法、表示法及两个平面相交的画法;2. 理解公理一、二、三,并能运用它们解决一些简单的问题;3. 通过实践活动,感知数学图形及符号的作用,从而由感性认识提升为理性认识,注意区别空间几何及平面几何的不同,多方面培养学生的空间想象力.教学重点:公理一、二、三,实践活动感知空间图形教学难点:公理三,由抽象图形认识空间模型学法指导:动手实践操作,由模型到图形,由图形到模型不断感知.教学过程一、引入在平面几何中,我们已经了解了平面图形都是由点和线构成的,我们所做的一切都是在一个无形的平面中进展,请同学谈谈到底平面是什么样子的?可以举实例说明.在平面几何中,我们也知道直线是无限延伸的,我们是怎样表示这种无限延伸的?那么你认为平面是否有边界?你又认为如何去表示平面呢?二、新课以上问题经过学生分小组充分讨论,由各小组代表陈述你这样表示的理由?教师暂不作评判,继续往下进展.实践活动:1. 仔细观察教室,举出空间的点、线、面的实例.2. 只准切三刀,请你把一块长方体形状的豆腐切成形状、大小都一样的八块.3. 请你准备六根游戏棒,以每根游戏棒为一边,设法搭出四个正三角形.以上这些问题已经走出了平面的限制,是空间问题.今后我们将研究空间中的点、线、面之间的关系. 图1问题:指出上述活动中几何体的面,并想想如何在一张纸上画出这个几何体?至此我们应感受到画几何体及我们的视角有一定的关系.练习一:试画出以下各种位置的平面.1. 水平放置的平面2. 竖直放置的平面 图21 图223. 倾斜放置的平面图34. 请将以下四图中,看得见的局部用实线描出图41 图42 图43 图44小结:平面的画法和表示法.我们常常把水平的平面画成一个平行四边形,用平行四边形表示一个平面,如图5. 平行四边形的锐角通常画成45o,且横边长等于其邻边长的2倍. 如果一个平面被另一个平面遮挡住,为了增强它的立体感,我们常把被遮挡局部用虚线画出来,如图6. 图5 图6 图7平面常用希腊字母等表示写在代表平面的平行四边形的一个角上,如平面、平面;也可以用代表平面的平行四边形的四个顶点,或相对的两个顶点的大写英文字母作为平面的名称,图5的平面,也可表示为平面ABCD,平面AC或平面BD.前面我们感受了空间中面及面的关系及画法,现在让我们研究一下点、线及一个平面会有怎样的关系?显然,一个点及一个平面有两种位置关系:点在平面内和点在平面外.我们知道平面内有无数个点,可以认为平面是由它内部的所有的点组成的点集,因此点和平面的位置关系可以引用集合及元素之间关系.从集合的角度,点A在平面内,记为;点B在平面外,记为如图7.再来研究一下直线及平面的位置关系. 将学生分成小组,并动手实践操作后讨论:把一把直尺边缘上的任意两点放在桌面上,直尺的整个边缘就落在桌面上吗?请同学们再试着想一下,如何用图形表示直线及平面的这些空间关系?由“两点确定一条直线这一公理,我们不难理解如下结论:公理1 如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内.且ABl 图8例1 分别用符号语言、文字语言描述以下图形AaAaa 图91 图92 图93例2识图填空在空格内分别填上abBAA_a;A_,B_a;B_,a_;a_= B,b_;B_b图10 图11问题情景:制作一张桌子,至少需要多少条腿?为什么?公理2经过不在同一条直线上的三点,有且只有一个平面.实践活动:取出两张纸演示两个平面会有怎样的位置关系,并试着用图画出来.图12试问:如图13是两个平面的另一种关系吗?相对于同学们得出的关系由平面的无限延展性,不难理解如下结论:公理3如果两个不重合平面有一个公共点,那么它们有且只有一条过这个公共点的直线.lP且图13例3 如图14用符号表示以下图形中点、直线、平面之间的位置关系.l 【分析】根据图形,先判断点、直线、平面之间的位置关系,然后用符号表示出来.【解析】在1中,.在2中,.三、稳固练习教材P43练习14.四、课堂小结1本节课我们学习了哪些知识内容?2三个公理的内容及作用是什么?3判断共面的方法.五、布置作业P51 习题A组 1,2第2课时教学内容:2.1.2 空间中直线及直线之间的位置关系教学目标:一、知识目标1. 了解空间中两条直线的位置关系;2. 理解异面直线的概念、画法,培养学生的空间想象能力;3. 理解并掌握公理4二、能力目标1. 让学生在观察中培养自主思考的能力;2. 通过师生的共同讨论培养合作学习的能力.三、情感、态度及价值观让学生感受到掌握空间两直线关系的必要性,提高学生的学习兴趣.教学重点、难点教学重点:1. 异面直线的概念;2. 公理4.教学难点:异面直线的概念.学法及教学用具1. 学法:学生通过观察、思考及教师交流、概括,从而较好地完本钱节课的教学目标;2. 教学用具:多媒体、长方体模型、三角板教学过程一、复习引入1平面内两条直线的位置关系有相交直线、平行直线相交直线有一个公共点;平行直线无公共点立交桥立交桥中, 两条路线AB,CD既不平行,又不相交非平面问题六角螺母 ABCD二、新课讲解1. 异面直线的定义不同在任何一个平面内的两条直线叫做异面直线练习:在教室里找出几对异面直线的例子注1:两直线异面的判别一 : 两条直线既不相交、又不平行两直线异面的判别二 : 两条直线不同在任何一个平面内合作探究一:分别在两个平面内的两条直线是否一定异面?答:不一定,它们可能异面,可能相交,也可能平行 空间两直线的位置关系:按平面根本性质分 1同在一个平面内:相交直线、平行直线;2不同在任何一个平面内:异面直线按公共点个数分 1有一个公共点: 相交直线;2无公共点:平行直线、异面直线2异面直线的画法说明:画异面直线时,为了表达它们不共面的特点,常借助一个或两个平面来衬托.合作探究二:如以下图是一个正方体的展开图,如果将它复原为正方体, 那么 AB , CD ,EF, GH 这四条线段所在直线是异面直线的有 对HCBEDGA答:共有三对3. 异面直线所成的角1复习回忆ABGFHEDC在平面内,两条直线相交成四个角, 其中不大于90度的角称为它们的夹角, 用以刻画两直线的错开程度, 如下图.O2问题提出在空间,如下图,正方体ABCDEFGH中, 异面直线AB及HF的错开程度可以怎样来刻画?3解决问题思想方法:平移转化成相交直线所成的角,即化空间图形问题为平面图形问题异面直线所成角的定义:如图,两条异面直线a,b,经过空间任一点O作直线aa,b b那么把a 及b 所成的锐角或直角叫做异面直线所成的角或夹角aOb异面直线所成的角的范围0°,90°注2:如果两条异面直线 a , b 所成的角为直角,我们就称这两条直线互相垂直, 记为ab思考:这个角的大小及O点的位置有关吗?即O点位置不同时,这一角的大小是否改变 答:这个角的大小及O点的位置无关.4理论支持一我们知道,在同一平面内, 如果两条直线都和第三条直线平行,那么这两条直线互相平行在空间这一规律是否还成立呢观察:将一张纸如图进展折叠 , 那么各折痕及边a,b,c,d,e, 之间有何关系?abced ab c d e 公理 在空间平行于同一条直线的两条直线互相平行平行的传递性推广:在空间平行于一条直线的所有直线都互相平行D1C1B1A1CABD二在平面内, 我们可以证明 “ 如果一个角的两边及另一个角的两边分别平行,那么这两个角相等或互补 空间中这一结论是否仍然成立呢?观察:如下图,长方体ABCD-A1B1C1D1中, ADC及A1D1C1 ,ADC及A1B1C1两边分别对应平行,这两组角的大小关系如何答:从图中可看出, ADC=A1D1C1,ADC +A1B1C1=180°定理等角定理 空间中,如果两个角的两边分别对应平行,那么这两个角相等或互补证: 这个角的大小及O点的位置无关.【证明】如图,再过空间另一点O作aa ,设a 及 b 所成的角为1,a 及 b 所成的角为2 ,aa,aa,aa公理4,同理 bb,1=2等角定理注3:在求作异面直线所成的角时,O点常选在其中的一条直线上如线段的端点,线段的中点等三、例题选讲1. 以下图长方体中GFHEBCDA1说出以下各对线段的位置关系EC和BH是相交直线,BD和FH是平行直线, BH和DC是异面直线 2及棱AB所在直线异面的棱共有4条课后思考:长方体的棱中共有多少对异面直线?ABGFHEDC例2如图,正方体ABCD-EFGH中O为侧面ADE的中心,求1BE及CG所成的角?2FO及BD所成的角?【解析】1如图:CGBF,EBF或其补角为异面直线BE及CG所成的角,又 D BEF中EBF =45° ,所以BE及CG所成的角为45°2连接FH, HDEAFB, HDFB,四边形HFBD为平行四边形,HFBD,HFO或其补角为异面直线FO及BD所成的角连接HA、AF,易得FH=HA=AF,AFH为等边三角形,又依题意知O为AH中点, HFO=30o 即FO及BD所成的夹角是30 o注4:求异面直线的步骤是:“一作找二证三求四、课堂练习GFHEBCDA例3 如图,长方体ABCD-EFGH中,AB =, AD =,AE = 21求BC 和EG 所成的角是多少度2求AE 和BG 所成的角是多少度答:1 45o 2 60o五、课堂小结 1本节课学习了哪些知识内容?异面直线、平行公理、等角定理、异面直线所成的角2计算异面直线所成的角应注意什么?把空间角转化为平面角 六、课后作业 P48 练习1,2P5152习题2.1 A组 3,41236,5,6, B组1第3课时教学内容:教学目标一、知识及技能1. 了解空间中直线及平面的位置关系;2. 了解空间中平面及平面的位置关系;3. 培养学生的空间想象能力.二、过程及方法1. 通过观察及类比加深了对这些位置关系的理解、掌握;2. 利用已有的知识及经历归纳整理本节所学知识.教学重点、难点教学重点:空间直线及平面、平面及平面之间的位置关系.教学难点:用图形表达直线及平面、平面及平面的位置关系.学法及教学用具1. 学法:学生借助实物,通过观察、类比、思考等,较好地完本钱节课的教学目标.2. 教学用具:投影仪、长方体模型教学过程一、创设情景、导入课题教师以生活中的实例以及课本P53的思考题为载体,提出了空间中直线及平面有多少种位置关系?板书课题二、研探新知1. 引导学生观察、思考身边的实物,从而直观、准确地归纳出直线及平面有三种位置关系:1直线在平面内有无数个公共点;2直线及平面相交有且只有一个公共点;3直线在平面平行没有公共点指出:直线及平面相交或平行的情况统称为直线在平面外,可用a来表示直线及平面的三种位置关系见下页图a a=A a一般地,直线a在平面内,应把直线a画在表示平面的平行四边形内;直线a在平面外,应把直线a 或它的一局部画在表示平面的平行四边形外;直线a及平面相交于点A,记作a=A;直线a及平面平行,记作a.例4 以下命题中正确的个数是1假设直线l上有无数个点不在平面内,那么l.2假设直线l及平面平行,那么l及平面内的任意一条直线都平行.3如果两条平行直线中的一条及一个平面平行,那么另一条也及这个平面平行.4假设直线l及平面平行,那么l及平面内的任意一条直线都没有公共点.A. 0B. 1C. 2D. 3【分析】可以借助长方体模型来看上述问题是否正确.问题1不正确,相交时也符合.问题2不正确,如右图中,AB及平面DCCD平行,但它及CD不平行.问题3不正确另一条直线有可能在平面内,如ABCD,AB及平面DCCD平行,但直线CD平面DCCD问题4正确,所以选B2. 引导学生对生活实例以及对长方体模型的观察、思考,准确归纳出两个平面之间有两种位置关系:1拿出两本书,看作两个平面,上下、左右移动和翻转,看看它们之间的位置关系有几种?2如图,围成长方体ABCDABCD六个面,两两之间的位置关系有几种?在问题1中,通过观察可以发现,两本书可以平行,也可以是相交,注意平面是无限延展的.在问题2中上下面,左右面,前后面是平行的,相邻的两个面是相交的,所以位置关系有平行及相交两种.两个平面之间的关系有且只有两种:1两个平面平行没有公共点;2两个平面相交有且只有一条公共直线用类比的方法,学生很快地理解及掌握了新内容,这两种位置关系用图形表示为见下页L = L教师指出:画两个相互平行的平面时,要注意使表示平面的两个平行四边形的对应边平行.探究:平面,直线a,b,且,a, b,那么直线a及直线b具有什么样的位置关系?让学生独立思考,稍后教师作指导,加深学生对这两种位置关系的理解.没有交点,有可能平行,有可能是异面直线.教材P49练习学生独立完成后教师检查、指导三、归纳整理、整体认识教师引导学生归纳,整理本节课的知

    注意事项

    本文(必修二空间点直线平面之间的位置关系教案.doc)为本站会员(美****子)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开