知识讲解空间直角坐标系基础.doc
空间直角坐标系【学习目标】通过具体情境,感受建立空间直角坐标系的必要性,了解空间直角坐标系,会用空间直角坐标系刻画点的位置.通过表示特殊长方体(所有棱分别与坐标轴平行)顶点的坐标,探索并得出空间两点间的距离公式.【要点梳理】要点一、空间直角坐标系从空间某一定点O引三条互相垂直且有一样单位长度的数轴,这样就建立了空间直角坐标系Oxyz,点O叫做坐标原点,x轴、y轴、z轴叫做坐标轴,这三条坐标轴中每两条确定一个坐标平面,分别是xOy平面、yOz平面、zOx平面.在空间直角坐标系中,让右手拇指指向x轴的正方向,食指指向y轴的正方向,如果中指指向z轴的正方向,那么称这个坐标系为右手直角坐标系.空间一点A的坐标可以用有序数组(x,y,z)来表示,有序数组(x,y,z)叫做点A的坐标,记作A(x,y,z),其中x叫做点A的横坐标,y叫做点A的纵坐标,z叫做点A的竖坐标.要点二、空间直角坐标系中点的坐标通过该点,作两条轴所确定平面的平行平面,此平面交另一轴于一点,交点在这条轴上的坐标就是点相应的一个坐标.特殊点的坐标:原点;轴上的点的坐标分别为;坐标平面上的点的坐标分别为.在空间直角坐标系中,点,那么有点关于原点的对称点是;点关于横轴(x轴)的对称点是;点关于纵轴(y轴)的对称点是;点关于竖轴(z轴)的对称点是;点关于坐标平面的对称点是;点关于坐标平面的对称点是;点关于坐标平面的对称点是.要点三、空间两点间距离公式空间中有两点,那么此两点间的距离.特别地,点与原点间的距离公式为.空间中有两点,那么线段AB的中点C的坐标为.【典型例题】类型一:空间坐标系例1在正方体ABCDA1B1C1D1中,E、F分别是BB1、D1B1的中点,棱长为1,建立空间直角坐标系,求点E、F的坐标。【答案】,【解析】 法一:如图,以A为坐标原点,以AB,AD,AA1所在直线分别为x轴,y轴,z轴建立空间直角坐标系,点E在xOy面上的投影为B1,0,0,点E竖坐标为,。F在xOy面上的投影为BD的中点G,竖坐标为1,。法二:如解法一所建立空间直角坐标系,B11,0,1,D10,1,1,B1,0,0E为BB1的中点,F为B1D1的中点,E的坐标为,F的坐标为。点评:此题主要考察空间中点的坐标确实定,关键是建立坐标系找到各个坐标分量。由于正方体的棱AB,AD,AA1互相垂直,可以以它们所在直线为坐标轴建系。点的各个坐标分量就是这个点在各个坐标轴上的投影在相应坐标轴上的坐标。举一反三:【变式1】在如下图的空间直角坐标系中,OABCD1A1B1C1是单位正方体,N是BB1的中点,求这个单位正方体各顶点和点N的坐标【答案】O0,0,0,A1,0,0,B1,1,0,C0,1,0,D10,0,1,A11,0,1,B11,1,1,C10,1,1,N1,1,。例2在平面直角坐标系中,点Px,y的几种特殊的对称点的坐标如下: 1关于原点的对称点是Px,y; 2关于轴的对称点是Px,y; 3关于轴的对称点是Px,y 那么,在空间直角坐标系内,点Px,y,z的几种特殊的对称点坐标为: 关于原点的对称点是P1_; 关于横轴x轴的对称点是P2_; 关于纵轴y轴的对称点是P3_; 关于竖轴z轴的对称点是P4_; 关于xOy坐标平面的对称点是P5_; 关于yOz坐标平面的对称点是P6_; 关于zOx坐标平面的对称点是P7_【答案】x,y,z x,y,z x,y,z x,y,zx,y,z x,y,z x,y,z【解析】类比平面直角坐标系,在空间直角坐标系有如下结论:P1x,y,z;P2x,y,z;P3x,y,z;P4x,y,z;P5x,y,z;P6x,y,z;P7x,y,z 【总结升华】上述结论的证明,可类比平面直角坐标系的方法加以证明:如P点关于原点的对称点P1,那么有PP1的中点为原点。由中点坐标公式即可求出P1点坐标上述结论的记忆方法:“关于谁对称谁不变,其余的相反,如关于轴对称的点,横坐标不变,纵、竖坐标变为原来的相反数;关于坐标平面对称的点,横、纵坐标不变,竖坐标相反举一反三:【变式1】2021 春 福建厦门期末在空间直角坐标系Oxyz,点P1,2,3关于xOy平面的对称点是 A1,2,3 B1,2,3 C1,2,3 D1,2,3【答案】C【解析】空间直角坐标系中任一点Pa,b,c关于坐标平面xOy的对称点为;由题意可得:点P1,2,3关于xOy平面的对称点的坐标是1,2,3应选:C【总结升华】此题考察空间向量的坐标的概念,向量的坐标表示,空间点的对称点的坐标的求法,记住某些结论性的东西将有利于解题空间直角坐标系中任一点Pa,b,c关于坐标平面xOy的对称点为a,b,c;关于坐标平面yOz的对称点为a,b,c;关于坐标平面xOz的对称点为a,b,c类型二:两点间的距离公式例3空间坐标系Oxyz中,点A在x轴上,点B1,0,2,且,那么点A坐标为_【思路点拨】根据点A在x轴上,设点Ax,0,0,再由结合空间两点距离公式,建立关于x的方程,解得x值,从而得到点A坐标【答案】0,0,0或2,0,0【解析】点A在x轴上,可设点Ax,0,0,又B1,0,2,且,解之得x=0或2,所以点A的坐标为:0,0,0或2,0,0;故答案为:0,0,0或2,0,0【总结升华】此题给出x轴上一点到空间两个点的距离相等,求该点的坐标,着重考察了空间两点的距离公式和含有根号的方程的解法举一反三: 【高清课堂:空间直角坐标系381528 知识点3中的例题1】【变式1】在空间中,点A(1,0, 1),B(4,3, 1),求A、B两点之间的距离. 【答案】 【变式2】2021 湖南衡阳模拟四棱锥SABCD中,底面边长为2,侧棱长为3,E是侧棱SC的中点,建立如下图的空间直角坐标系,试求点A、C、E的坐标【思路点拨】根据如下图的空间坐标系,即可求出点A、C、E的坐标【答案】【解析】四棱锥SABCD中,四边形ABCD为正方形,SO平面ABCD,SOAC,AB=2,SC=3,点,例4在正方体ABCDA1B1C1D1中,P为平面A1B1C1D1的中心,求证:PAPB1 【解析】如图,建立空间直角坐标系D-xyz,设棱长为1,那么A1,0,0,B11,1,1,由两点间的距离公式得,。 |AP|2+|PB1|2=|AB1|2=2,APPB1 【总结升华】本例的求解方法尽管很多,但利用坐标法求解,应该说是既简捷又易行,方法的对照比拟,也更表达出了坐标法解题的优越性 依据题中的垂直关系,建立恰当的坐标系,利用空间中两点间的距离公式可以求距离、证垂直、求角度等,为我们提供了新的解题方法举一反三: 【变式1】如下列图所示,PA平面ABCD,平面ABCD为矩形,M、N分别是AB、PC的中点,求证:MNAB。 【解析】如下图,以A为坐标原点,分别以AB、AD、AP所在直线为x轴、y轴、z轴建立空间直角坐标系,那么A0,0,0,设Ba,0,0,D0,b,0,P0,0,c,因为M、N分别是AB、PC的中点,所以,。方法一:连接AN,在AMN中,有,所以|AN|2=|MN|2+|AM|2,所以MNAB。方法二:连接AN、BN,因为,所以|AN|2=|BN|2,即|AN|=|BN|,所以ABN为等腰三角形,又M为底边AB的中点,所以MNAB。