上海市-八年级(下)期末数学试卷-(含答案).docx
-
资源ID:58019700
资源大小:98.07KB
全文页数:11页
- 资源格式: DOCX
下载积分:20金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
上海市-八年级(下)期末数学试卷-(含答案).docx
2017-2018学年上海市闵行区八年级(下)期末数学试卷副标题题号一二三四总分得分一、选择题(本大题共4小题,共12.0分)1. 用两个全等的直角三角形拼下列图形:(1)平行四边形(不包含菱形,矩形,正方形);(2)矩形;(3)正方形;(4)等腰三角形,一定可以拼成的图形是()A. (1)(2)(4)B. (2)(3)(4)C. (1)(3)(4)D. (1)(2)(3)2. 已知直线y=kx+b与直线y=-2x+5平行,那么下列结论正确的是()A. k=2,b=5B. k2,b=5C. k=2,b5D. k2,b=53. 下列方程没有实数根的是()A. x3+2=0B. x2+2x+2=0C. x23=x1D. xx12x1=04. 下列等式正确的是()A. AB+BC=CB+BAB. ABBC=ACC. AB+BC+CD=DAD. AB+BCAC=0二、填空题(本大题共7小题,共14.0分)5. 如图,在RtABC中,C=90°,AC=6,BC=8D、E分别为边BC、AC上一点,将ADE沿着直线AD翻折,点E落在点F处,如果DFBC,AEF是等边三角形,那么AE=_6. 一个不透明的布袋中放有大小、质地都相同四个红球和五个白球,小敏第一次从布袋中摸出一个红球后放回布袋中,接看第二次从布袋中摸球,那么小敏第二次还是摸出红球的可能性为_7. 一辆汽车,新车购买价20万元,第一年使用后折旧20%,以后该车的年折旧率有所变化,但它在第二,三年的年折旧率相同已知在第三年年末,这辆车折旧后价值11.56万元,如果设这辆车第二、三年的年折旧率为x,那么根据题意,列出的方程为_8. 已知一次函数y=2(x-2)+b的图象在y轴上的截距为5,那么b=_9. 在梯形ABCD中,ADBC,如果AD=4,BC=10,E、F分别是边AB、CD的中点,那么EF=_10. 已知方程x2+13x-xx2+1=2,如果设xx2+1=y,那么原方程可以变形为关于y的整式方程是_11. 已知ABCD的周长为40,如果AB:BC=2:3,那么AB=_三、计算题(本大题共1小题,共6.0分)12. 已知直线y=kx+b经过点A(-20,5)、B(10,20)两点(1)求直线y=kx+b的表达式;(2)当x取何值时,y5四、解答题(本大题共5小题,共38.0分)13. 如图,在梯形ABCD中,ADBC,AB=CD,BC=10,对角线AC、BD相交于点O,且ACBD,设AD=x,AOB的面积为y(1)求DBC的度数;(2)求y关于x的函数解析式,并写出自变量x的取值范围;(3)如图1,设点P、Q分别是边BC、AB的中点,分别联结OP,OQ,PQ如果OPQ是等腰三角形,求AD的长14. 已知:如图,在ABCD中,设BA=a,BC=b(1)填空:CA=_(用a、b的式子表示)(2)在图中求作a+b(不要求写出作法,只需写出结论即可)15. 如图,在菱形ABCD中,DEAB,垂足为点E,且E为边AB的中点(1)求A的度数;(2)如果AB=4,求对角线AC的长16. 如图,在ABC中,C=90°,D为边BC上一点,E为边AB的中点,过点A作AFBC,交DE的延长线于点F,联结BF(1)求证:四边形ADBF是平行四边形;(2)当D为边BC的中点,且BC=2AC时,求证:四边形ACDF为正方形17. 解方程组:x2+xy=0x2+4xy+4y2=9答案和解析1.【答案】A【解析】解:拿两个“90°、60°、30°的三角板一试可得,用两个全等的直角三角形拼下列图形:(1)平行四边形(不包含菱形、矩形、正方形);(2)矩形;(4)等腰三角形 而正方形需特殊的直角三角形:等腰直角三角形 故选:A两个全等的直角三角形直角边重合拼成的四边形一定是平行四边形;直角边重合拼成的三角形一定是等腰三角形;斜边重合拼成的四边形一定是长方形拿两个全等的三角板动手试一试就能解决本题考查了图形的剪拼,培养学生的动手能力,有些题只要学生动手就能很快求解,注意题目的要求有“一定”二字2.【答案】C【解析】解:直线y=kx+b与直线y=-2x+5平行, k=-2,b5 故选:C利用两直线平行问题得到k=-2,b5即可求解本题考查了两条直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解若两条直线是平行的关系,那么它们的自变量系数相同,即k值相同3.【答案】B【解析】解:A、x3+2=0,x3=-2,x=-,即此方程有实数根,故本选项不符合题意;B、x2+2x+2=0,=22-4×1×2=-40,所以此方程无实数根,故本选项符合题意;C、=x-1,两边平方得:x2-3=(x-1)2,解得:x=2,经检验x=2是原方程的解,即原方程有实数根,故本选项不符合题意;D、-=0,去分母得:x-2=0,解得:x=2,经检验x=2是原方程的解,即原方程有实数根,故本选项不符合题意;故选:B根据立方根的定义即可判断A;根据根的判别式即可判断B;求出方程x2-3=(x-1)2的解,即可判断C;求出x-2=0的解,即可判断D本题考查了解无理方程、解分式方程、解一元二次方程、根的判别式等知识点,能求出每个方程的解是解此题的关键4.【答案】D【解析】解:+=,+-=-=,故选:D根据三角形法则即可判断;本题考查平面向量的三角形法则,解题的关键是熟练掌握三角形法则,属于中考常考题型5.【答案】4【解析】解:如图:折叠EAD=FAD,DE=DFDFE=DEFAEF是等边三角形EAF=AEF=60°EAD=FAD=30°在RtACD中,AC=6,CAD=30°CD=2FDBC,ACBCACDFAEF=EFD=60°FED=60°AEF+DEC+DEF=180°DEC=60°在RtDEC中,DEC=60°,CD=2EC=2AE=AC-ECAE=6-2=4故答案为4由题意可得CAD=30°,AEF=60°,根据勾股定理可求CD=2,由ACDF,则AEF=EFD=60°,且DE=DF,可得DEF=DFE=60°,可得DEC=60°根据勾股定理可求EC的长,即可求AE的长本题考查了翻折问题,等边三角形的性质,勾股定理,求CED 度数是本题的关键6.【答案】1681【解析】解:小敏第一次从布袋中摸出一个红球的概率为,第二次从布袋中摸出一个红球的概率为,两次摸出的球都是红球的概率为:=故答案为:小敏第一次从布袋中摸出一个红球的概率为,第二次从布袋中摸出一个红球的概率为,据此可得两次摸出的球都是红球的概率本题主要考查了概率的计算,用到的知识点为:概率=所求情况数与总情况数之比7.【答案】20(1-20%)(1-x)2=11.56【解析】解:设这辆车第二、三年的年折旧率为x,有题意,得 20(1-20%)(1-x)2=11.56 故答案是:20(1-20%)(1-x)2=11.56设这辆车第二、三年的年折旧率为x,则第二年这就后的价格为20(1-20%)(1-x)元,第三年折旧后的而价格为20(1-20%)(1-x)2元,与第三年折旧后的价格为11.56万元建立方程一道折旧率问题,考查了列一元二次方程解实际问题的运用,解答本题时设出折旧率,表示出第三年的折旧后价格并运用价格为11.56万元建立方程是关键8.【答案】9【解析】解:y=2(x-2)+b=2x+b-4,且一次函数y=2(x-2)+b的图象在y轴上的截距为5, b-4=5, 解得:b=9 故答案为:9将原函数解析式变形为一般式,结合一次函数图象在y轴上的截距,即可得出关于b的一元一次方程,解之即可得出结论本题考查了一次函数图象上点的坐标特征,牢记截距的定义是解题的关键9.【答案】7【解析】解:E,F分别是边AB,CD的中点,EF为梯形ABCD的中位线,EF=(AD+BC)=(4+10)=7故答案为7根据梯形中位线定理得到EF=(AD+BC),然后把AD=4,BC=10代入可求出EF的长本题考查了梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半10.【答案】3y2+6y-1=0【解析】解:设=y,原方程变形为:-y=2,化为整式方程为:3y2+6y-1=0,故答案为3y2+6y-1=0根据=y,把原方程变形,再化为整式方程即可本题考查了用换元法解分式方程,掌握整体思想是解题的关键11.【答案】8【解析】解:平行四边形ABCD的周长为40cm,AB:BC=2:3,可以设AB=2a,BC=3a,AB=CD,AD=BC,AB+BC+CD+AD=40,2(2a+3a)=40,解得:a=4,AB=2a=8,故答案为:8根据平行四边形的性质推出AB=CD,AD=BC,设AB=2a,BC=3a,代入得出方程2(2a+3a)=40,求出a的值即可本题考查了平行四边形的性质和解一元一次方程等知识点的应用,关键是根据题意得出方程2(2a+3a)=40,用的数学思想是方程思想,题目比较典型,难度也适当12.【答案】解:(1)根据题意得10k+b=2020k+b=5,解得k=12b=15,所以直线解析式为y=12x+15;(2)解不等式12x+155得x-20,即x-20时,y5【解析】(1)利用待定系数法求一次函数解析式;(2)解不等式x+155即可本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;再将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;然后解方程或方程组,求出待定系数的值,进而写出函数解析式13.【答案】解:(1)过点D作AC的平行线DE,与BC的延长线交于E点梯形ABCD中,ADBC,ACDE,四边形ACED为平行四边形,AC=DE,AD=CE,AB=CD,梯形ABCD为等腰梯形,AC=BD,BD=DE,又ACBD,BOC=90°ACDEBDE=90°,BDE是等腰直角三角形,DBC=45°(2)由(1)可知:BOC,AOD都是等腰直角三角形,AD=x,BC=10,OA=22x,OB=52,y=12OAOB=1222x×52=52x(x0)(3)如图2中,当PQ=PO=12BC=5时,AQ=QB,BP=PC=5,PQAC,PQ=12AC,AC=10,OC=52,OA=10-52,AD=2OA=102-10当OQ=OP=5时,AB=2OQ=10,此时AB=BC,BAC=BCA=45°,ABC=90°,同理可证:DCB=90°,四边形ABCD是矩形,不符合题意,此种情形不存在当OQ=PQ时,AB=2OQ,AC=2PQ,AB=AC,ABC=ACB=45°,BAC=90°=BOC,显然不可能,综上所述,满足条件的AD的值为102-10【解析】(1)过点D作AC的平行线DE,与BC的延长线交于E点,只要证明BDE是等腰直角三角形即可解决问题;(2)由(1)可知:BOC,AOD都是等腰直角三角形,由题意OA=x,OB=5,根据y=OAOB计算即可;(3)分三种情形讨论即可解决问题;本题考查四边形综合题、梯形、等腰直角三角形的判定和性质、等腰三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造特殊三角形解决问题,学会用分类讨论的思想思考问题,属于中考压轴题14.【答案】a-b【解析】解:(1)=+,=,=-故答案为-(2)连接BD=+,=,=+即为所求;(1)根据三角形法则可知:=+,延长即可解决问题;(2)连接BD因为=+,=,即可推出=+本题考查作图-复杂作图、平行四边形的性质、平面向量等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型15.【答案】解:连接AC,BD(1)四边形ABCD是菱形AD=ABE是AB中点,DEABAD=DBAD=DB=ABADB是等边三角形A=60°(2)四边形ABCD是菱形ACBD,DAC=12DAB=30°,AO=CO,DO=BOAD=BA=4DO=2,AO=3DO=23AC=23【解析】(1)根据线段垂直平分线的性质可得DB=AD,即可证ADB是等边三角形,可得A=60°(2)由题意可得DAC=30°,ACBD,可得DO=2,AO=2,即可求AC的长本题考查了菱形的性质,熟练运用菱形性质解决问题是本题的关键16.【答案】(1)证明:AFBC,AFE=BDE,在AEF与BED中,AFE=BDEAEF=BEDAE=BE,AEFBED,AF=BD,AFBD,四边形ADBF是平行四边形;(2)解:CD=DB,AE=BE,DEAC,FDB=C=90°,AFBC,AFD=FDB=90°,C=CDF=AFD=90°,四边形ACDF是矩形,BC=2AC,CD=BD,CA=CD,四边形ACDF是正方形【解析】(1)根据平行线的性质得到AFE=BDE,根据全等三角形的性质得到AF=BD,于是得到结论; (2)首先证明四边形ACDF是矩形,再证明CA=CD即可解决问题;本题考查了全等三角形的判定和性质,平行四边形的判定,矩形的判定和性质,正方形的判定,三角形中位线定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型17.【答案】解:由得:(x+2y)2=9,x+2y=±3,由得:x(x+y)=0,x=0,x+y=0,即原方程组化为:x=0x+2y=3,x+y=0x+2y=3,x=0x+2y=3,x+y=0x+2y=3,解得:y=1.5x=0,y=3x=3,y=1.5x=0,y=1.5x=1.5,所以原方程组的解为:y=1.5x=0,y=3x=3,y=1.5x=0,y=1.5x=1.5【解析】先把原方程组的每个方程化简,这样原方程组转化成四个方程组,求出每个方程组的解即可本题考查了解二元一次方程组和解高次方程组,能把高次方程组转化成二元一次方程组是解此题的关键11 / 11