欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    用希尔伯特黄变换HHT求时频谱和边际谱.doc

    • 资源ID:58041116       资源大小:177.50KB        全文页数:18页
    • 资源格式: DOC        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    用希尔伯特黄变换HHT求时频谱和边际谱.doc

    【原创】用希尔伯特黄变换HHT求时频谱与边际谱寒假将至,精心将自己最近做的东西总结了一下,能跟大家分享讨论是我的荣幸。源代码也贴出来了,希望大家能提出珍贵意见顺祝大家寒假快乐,新年快乐1.什么是HHT?HHT就是先将信号进展经历模态分解EMD分解,然后将分解后的每个IMF分量进展Hilbert变换,得到信号的时频属性的一种时频分析方法。2.EMD分解的步骤。 (51.93 KB)2021-2-5 18:30 (31.36 KB)2021-2-5 18:30 (30.93 KB)2021-2-5 18:30EMD分解的流程图如下: (79.44 KB)2021-2-5 18:493.实例演示。给定频率分别为10Hz与35Hz的两个正弦信号相叠加的复合信号,采样频率fs=2048Hz的信号,表达式如下:y=5sin(2*pi*10t)+5*sin(2*pi*35t)(1)为了比照,先用fft对求上述信号的幅频与相频曲线。 复制内容到剪贴板 代码:function fftfenxiclear;clc;N=2048;%fft默认计算的信号是从0开场的t=linspace(1,2,N);deta=t(2)-t(1);1/detax=5*sin(2*pi*10*t)+5*sin(2*pi*35*t);% N1=256;N2=512;w1=0.2*2*pi;w2=0.3*2*pi;w3=0.4*2*pi;% x=(t>=-200&t<=-200+N1*deta).*sin(w1*t)+(t>-200+N1*deta&t<=-200+N2*deta).*sin(w2*t)+(t>-200+N2*deta&t<=200).*sin(w3*t);y = x;m=0:N-1;f=1./(N*deta)*m;%可以查看课本就是这样定义横坐标频率范围的%下面计算的Y就是x(t)的傅里叶变换数值%Y=exp(i*4*pi*f).*fft(y)%将计算出来的频谱乘以exp(i*4*pi*f)得到频移后-2,2之间的频谱值Y=fft(y);z=sqrt(Y.*conj(Y);plot(f(1:100),z(1:100);title('幅频曲线')xiangwei=angle(Y);figure(2)plot(f,xiangwei)title('相频曲线')figure(3)plot(t,y,'r')%axis(-2,2,0,1.2)title('原始信号') (57.26 KB)2021-2-5 18:42 (24.85 KB)2021-2-5 18:42 (25.65 KB)2021-2-5 18:422用Hilbert变换直接求该信号的瞬时频率 复制内容到剪贴板 代码:clear;clc;clf;%假设待分析的函数是z=t3N=2048;%fft默认计算的信号是从0开场的t=linspace(1,2,N);deta=t(2)-t(1);fs=1/deta;x=5*sin(2*pi*10*t)+5*sin(2*pi*35*t);z=x;hx=hilbert(z);xr=real(hx);xi=imag(hx);%计算瞬时振幅sz=sqrt(xr.2+xi.2);%计算瞬时相位sx=angle(hx);%计算瞬时频率dt=diff(t);dx=diff(sx);sp=dx./dt;plot(t(1:N-1),sp)title('瞬时频率') (35.92 KB)2021-2-5 18:42小结:傅里叶变换不能得到瞬时频率,即不能得到某个时刻的频率值。Hilbert变换是求取瞬时频率的方法,但如果只用Hilbert变换求出来的瞬时频率也不准确。出现负频,实际上负频没有意义!3用HHT求取信号的时频谱与边际谱 复制内容到剪贴板 代码:function HHTclear;clc;clf;N=2048;%fft默认计算的信号是从0开场的t=linspace(1,2,N);deta=t(2)-t(1);fs=1/deta;x=5*sin(2*pi*10*t)+5*sin(2*pi*35*t);z=x;c=emd(z);%计算每个IMF分量及最后一个剩余分量residual与原始信号的相关性m,n=size(c);for i=1:m;a=corrcoef(c(i,:),z);xg(i)=a(1,2);endxg;for i=1:m-1%-%计算各IMF的方差奉献率%定义:方差为平方的均值减去均值的平方%均值的平方%imfp2=mean(c(i,:),2).2%平方的均值%imf2p=mean(c(i,:).2,2)%各个IMF的方差mse(i)=mean(c(i,:).2,2)-mean(c(i,:),2).2;end;mmse=sum(mse);for i=1:m-1mse(i)=mean(c(i,:).2,2)-mean(c(i,:),2).2; %方差百分比,也就是方差奉献率mseb(i)=mse(i)/mmse*100;%显示各个IMF的方差与奉献率end;%画出每个IMF分量及最后一个剩余分量residual的图形figure(1)for i=1:m-1disp('imf',int2str(i) ;disp(mse(i) mseb(i);end;subplot(m+1,1,1)plot(t,z)set(gca,'fontname','times New Roman')set(gca,'fontsize',14.0)ylabel('signal','Amplitude')for i=1:m-1subplot(m+1,1,i+1);set(gcf,'color','w')plot(t,c(i,:),'k')set(gca,'fontname','times New Roman')set(gca,'fontsize',14.0)ylabel('imf',int2str(i)endsubplot(m+1,1,m+1);set(gcf,'color','w')plot(t,c(m,:),'k')set(gca,'fontname','times New Roman')set(gca,'fontsize',14.0)ylabel('r',int2str(m-1)%画出每个IMF分量及剩余分量residual的幅频曲线figure(2)subplot(m+1,1,1)set(gcf,'color','w')f,z=fftfenxi(t,z);plot(f,z,'k')set(gca,'fontname','times New Roman')set(gca,'fontsize',14.0)ylabel('initial signal',int2str(m-1),'Amplitude')for i=1:m-1subplot(m+1,1,i+1);set(gcf,'color','w')f,z=fftfenxi(t,c(i,:);plot(f,z,'k')set(gca,'fontname','times New Roman')set(gca,'fontsize',14.0)ylabel('imf',int2str(i),'Amplitude')endsubplot(m+1,1,m+1);set(gcf,'color','w')f,z=fftfenxi(t,c(m,:);plot(f,z,'k')set(gca,'fontname','times New Roman')set(gca,'fontsize',14.0)ylabel('r',int2str(m-1),'Amplitude')hx=hilbert(z);xr=real(hx);xi=imag(hx);%计算瞬时振幅sz=sqrt(xr.2+xi.2);%计算瞬时相位sx=angle(hx);%计算瞬时频率dt=diff(t);dx=diff(sx);sp=dx./dt;figure(6)plot(t(1:N-1),sp)title('瞬时频率')%计算HHT时频谱与边际谱A,fa,tt=hhspectrum(c);E,tt1=toimage(A,fa,tt,length(tt);figure(3)disp_hhs(E,tt1) %二维图显示HHT时频谱,E是求得的HHT谱pausefigure(4)for i=1:size(c,1)faa=fa(i,:);FA,TT1=meshgrid(faa,tt1);%三维图显示HHT时频图surf(FA,TT1,E)title('HHT时频谱三维显示')hold onendhold offE=flipud(E);for k=1:size(E,1)bjp(k)=sum(E(k,:)*1/fs; endf=(1:N-2)/N*(fs/2);figure(5)plot(f,bjp);xlabel('频率 / Hz');ylabel('信号幅值');title('信号边际谱')%要求边际谱必须先对信号进展EMD分解function A,f,tt = hhspectrum(x,t,l,aff)error(nargchk(1,4,nargin);if nargin < 2t=1:size(x,2);endif nargin < 3l=1;endif nargin < 4aff = 0;endif min(size(x) = 1if size(x,2) = 1x = x'if nargin < 2t = 1:size(x,2);endendNmodes = 1;elseNmodes = size(x,1);endlt=length(t);tt=t(l+1):(lt-l);for i=1:Nmodesan(i,:)=hilbert(x(i,:)')'f(i,:)=instfreq(an(i,:)',tt,l)'A=abs(an(:,l+1:end-l);if affdisprog(i,Nmodes,max(Nmodes,100)endendfunction disp_hhs(im,t,inf)% DISP_HHS(im,t,inf)% displays in a new figure the spectrum contained in matrix "im"% (amplitudes in log).% inputs : - im : image matrix (e.g., output of "toimage")% - t (optional) : time instants (e.g., output of "toimage") % - inf (optional) : -dynamic range in dB (wrt max)% default : inf = -20% utilisation : disp_hhs(im) ; disp_hhs(im,t) ; disp_hhs(im,inf) % disp_hhs(im,t,inf)figurecolormap(bone)colormap(1-colormap);if nargin=1inf=-20;t = 1:size(im,2);endif nargin = 2if length(t) = 1inf = t;t = 1:size(im,2);elseinf = -20;endendif inf >= 0error('inf doit etre < 0')endM=max(max(im);im = log10(im/M+1e-300);inf=inf/10;imagesc(t,fliplr(1:size(im,1)/(2*size(im,1),im,inf,0);set(gca,'YDir','normal')xlabel('time')ylabel('normalized frequency')title('Hilbert-Huang spectrum')function f,z=fftfenxi(t,y)L=length(t);N=2nextpow2(L);%fft默认计算的信号是从0开场的t=linspace(t(1),t(L),N);deta=t(2)-t(1);m=0:N-1;f=1./(N*deta)*m;%下面计算的Y就是x(t)的傅里叶变换数值%Y=exp(i*4*pi*f).*fft(y)%将计算出来的频谱乘以exp(i*4*pi*f)得到频移后-2,2之间的频谱值Y=fft(y);z=sqrt(Y.*conj(Y); (88.8 KB)2021-2-5 18:42 (93.91 KB)2021-2-5 18:42 (55.65 KB)2021-2-5 18:42 (108.1 KB)2021-2-5 18:42 (37.52 KB)2021-2-5 18:424.总结。1边际谱与傅里叶谱的比拟:         意义不同:边际谱从统计意义上表征了整组数据每个频率点的累积幅值分布,而傅里叶频谱的某一点频率上的幅值表示在整个信号里有一个含有此频率的三角函数组分。         作用不同:边际谱可以处理非平稳信号,如果信号中存在某一频率的能量出现,就表示一定有该频率的振动波出现,也就是说,边际谱能比拟准确地反映信号的实际频率成分。而傅里叶变换只能处理平稳信号。2 HHT与Hilbert变换的比拟:          Hilbert变换只是单纯地求信号的瞬时振幅,频率与相位,有可能出现没有意义的负频率;HHT变换先将信号进展EMD分解,得到的是各个不同尺度的分量,对每一个分量进展Hilbert变换后得到的是有实际意义的瞬时频率。PS:运行上面的程序需要装时频工具箱,我仅将用到的emd分解的程序贴到下面。第 18 页

    注意事项

    本文(用希尔伯特黄变换HHT求时频谱和边际谱.doc)为本站会员(美****子)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开