欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    能被等数整除的数的特征.doc

    • 资源ID:58044844       资源大小:22KB        全文页数:10页
    • 资源格式: DOC        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    能被等数整除的数的特征.doc

    能被2、3、4、5、6、7、8、9等数整除的数的特征 性质1:如果数a、b都能被c整除,那么它们的与a+b或差(ab)也能被c整除。性质2:几个数相乘,如果其中有一个因数能被某一个数整除,那么它们的积也能被这个数整除。 能被2整除的数,个位上的数是0、2、4、6、8、的数能被2整除偶数都能被2整除,那么这个数能被2整除能被3整除的数,各个数位上的数字与能被3整除,那么这个数能被3整除能被4整除的数,个位与十位所组成的两位数能被4整除,那么这个数能被4整除如果一个数的末两位数能被4或25整除,那么,这个数就一定能被4或25整除例如:467546×10075由于100能被25整除,100的倍数也一定能被25整除,4600与75均能被25整除,它们的与也必然能被25整除因此,一个数只要末两位数能被25整除,这个数就一定能被25整除又如: 8328×10032由于100能被4整除,100的倍数也一定能被4整除,800与32均能被4整除,它们的与也必然能被4整除因此, 因此,一个数只要末两位数字能被4整除,这个数就一定能被4整除能被5整除的数,个位上的数都能被5整除即个位为0或5那么这个数能被5整除能被6整除的数,个数位上的数字与能被3整除的偶数,             如果一个数既能被2整除又能被3整除,那么这个数能被6整除能被7整除的数, 假设一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,那么原数能被7整除。如果差太大或心算不易看出是否7的倍数,就需要继续 上述截尾、倍大、相减、验差的过程,直到能清楚判断为止。例如,判断133是否7的倍数的过程如下:133×27,所以133是7的倍数;又例如 判断6139是否7的倍数的过程如下:6139×2595 , 595×249,所以6139是7的倍数,余类推。 能被8整除的数,百位、个位与十位所组成的三位数能被8整除,那么这个数能被8整除能被9整除的数,各个数位上的数字与能被9整除,那么这个数能被9整除能被10整除的数,如果一个数既能被2整除又能被5整除,那么这个数能被10整除即个                   位数为零能被11整除的数,奇数位从左往右数上的数字与与偶数位上的数字与之差大数减小  数能被11整除,那么该数就能被11整除。 11的倍数检验法也可用上述检查7的割尾法处理!过程唯一不同的是:倍数不是2而是1!         能被12整除的数,假设一个整数能被3与4整除,那么这个数能被12整除能被13整除的数,假设一个整数的个位数字截去,再从余下的数中,加上个位数的4倍,如果差是13的倍数,那么原数能被13整除。如果差太大或心算不易看出是否13的倍数,就需要继续上述截尾、倍大、相加、验差的过程,直到能清楚判断为止。能被17整除的数,假设一个整数的个位数字截去,再从余下的数中,减去个位数的5倍,如果差是17的倍数,那么原数能被17整除。如果差太大或心算不易看出是否17的倍数,就需要继续上述截尾、倍大、相减、验差的过程,直到能清楚判断为止。   另一种方法:假设一个整数的末三位与3倍的前面的隔出数的差能被17整除,那么这个数能被17整除能被19整除的数,假设一个整数的个位数字截去,再从余下的数中,加上个位数的2倍,如果差是19的倍数,那么原数能被19整除。如果差太大或心算不易看出是否19的倍数,就需要继续上述截尾、倍大、相加、验差的过程,直到能清楚判断为止。 另一种方法:假设一个整数的末三位与7倍的前面的隔出数的差能被19整除,那么这个数能被19整除能被23整除的数,假设一个整数的末四位与前面5倍的隔出数的差能被23(或29)整除,那么这个数能被23整除能被25整除的数,十位与个位所组成的两位数能被25整除。能被125整除的数,百位、十位与个位所组成的三位数能被125整除。公式P是指排列,从N个元素取R个进展排列。公式C是指组合,从N个元素取R个,不进展排列。N-元素的总个数 R参与选择的元素个数 !-阶乘 ,如     9!9*8*7*6*5*4*3*2*1从N倒数r个,表达式应该为n*n-1)*(n-2).(n-r+1);                因为从n到n-r+1)个数为nn-r+1)r举例:Q1:    有从1到9共计9个号码球,请问,可以组成多少个三位数?A1:     123与213是两个不同的排列数。即对排列顺序有要求的,既属于“排列P计算范畴。       上问题中,任何一个号码只能用一次,显然不会出现988,997之类的组合, 我们可以这么看,百位数有9种可能,十位数那么应该有9-1种可能,个位数那么应该只有9-1-1种可能,最终共有9*8*7个三位数。计算公 式P3,9)9*8*7,(从9倒数3个的乘积Q2:    有从1到9共计9个号码球,请问,如果三个一组,代表“三国联盟,可以组合成多少个“三国联盟?A2:     213组合与312组合,代表同一个组合,只要有三个号码球在一起即可。即不要求顺序的,属于“组合C计算范畴。        上问题中,将所有的包括排列数的个数去除掉属于重复的个数即为最终组合数C(3,9)=9*8*7/3*2*1排列、组合的概念与公式典型例题分析 例1 设有3名学生与4个课外小组1每名学生都只参加一个课外小组;2每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加各有多少种不同方法?      解1由于每名学生都可以参加4个课外小组中的任何一个,而不限制每个课外小组的人数,因此共有 种不同方法      2由于每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加,因此共有 种不同方法 点评   由于要让3名学生逐个选择课外小组,故两问都用乘法原理进展计算     例2 排成一行,其中 不排第一, 不排第二, 不排第三, 不排第四的不同排法共有多少种? 解   依题意,符合要求的排法可分为第一个排 、 、 中的某一个,共3类,每一类中不同排法可采用画“树图的方式逐一排出: 符合题意的不同排法共有9种 点评   按照分“类的思路,此题应用了加法原理为把握不同排法的规律,“树图是一种具有直观形象的有效做法,也是解决计数问题的一种数学模型 例判断以下问题是排列问题还是组合问题?并计算出结果 1高三年级学生会有11人:每两人互通一封信,共通了多少封信?每两人互握了一次手,共握了多少次手? 2高二年级数学课外小组共10人:从中选一名正组长与一名副组长,共有多少种不同的选法?从中选2名参加省数学竞赛,有多少种不同的选法? 3有2,3,5,7,11,13,17,19八个质数:从中任取两个数求它们的商可以有多少种不同的商?从中任取两个求它的积,可以得到多少个不同的积? 4有8盆花:从中选出2盆分别给甲乙两人每人一盆,有多少种不同的选法?从中选出2盆放在教室有多少种不同的选法? 分析1由于每人互通一封信,甲给乙的信与乙给甲的信是不同的两封信,所以与顺序有关是排列;由于每两人互握一次手,甲与乙握手,乙与甲握手是同一次握手,与顺序无关,所以是组合问题其他类似分析 1是排列问题,共用了 封信;是组合问题,共需握手 次 2是排列问题,共有 种不同的选法;是组合问题,共有 种不同的选法 3是排列问题,共有 种不同的商;是组合问题,共有 种不同的积 4是排列问题,共有 种不同的选法;是组合问题,共有 种不同的选法 排列组合、二项式定理 一、考纲要求 1.掌握加法原理及乘法原理,并能用这两个原理分析解决一些简单的问题.2.理解排列、组合的意义,掌握排列数、组合数的计算公式与组合数的性质,并能用它们解决一些简单的问题.3.掌握二项式定理与二项式系数的性质,并能用它们计算与论证一些简单问题.二、知识构造 三、知识点、能力点提示 (一)加法原理乘法原理说明  加法原理、乘法原理是学习排列组合的根底,掌握此两原理为处理排 列、组合中有关问题提供了理论根据.例1  5位高中毕业生,准备报考3所高等院校,每人报且只报一所,不同的报名方法共有多少种解:  5个学生中每人都可以在3所高等院校中任选一所报名,因而每个学生都有3种不同的 报名方法,根据乘法原理,得到不同报名方法总共有3×3×3×3×3=35(种)(二)排列、排列数公式说明  排列、排列数公式及解排列的应用题,在中学代数中较为独特,它研 究的对象以及研 究问题的方法都与前面掌握的知识不同,内容抽象,解题方法比拟灵活,历届高考主要考察排列的应用题,都是选择题或填空题考察.例2  由数字1、2、3、4、5组成没有重复数字的五位数,其中小于50 000的 偶数共有(    )解  因为要求是偶数,个位数只能是2或4的排法有P12;小于50 000的五位数,万位只能是1、3或2、4中剩下的一个的排法有P13;在首末两位数排定后,中间3个位数的排法有P33,得P13P33P1236(个)由此可知此题应选C.例3  将数字1、2、3、4填入标号为1、2、3、4的四个方格里,每格填一个数字,那么每个方格的标号与所填的数字均不同的填法有多少种解:  将数字1填入第2方格,那么每个方格的标号与所填的数字均不一样的填法有3种,即214 3,3142,4123;同样将数字1填入第3方格,也对应着3种填法;将数字1填入第4方格,也对应3种填法,因此共有填法为3P13=9(种).第 10 页

    注意事项

    本文(能被等数整除的数的特征.doc)为本站会员(美****子)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开