2022年全国名校高中数学题库--数列 .pdf
数列练习题填空题训练20 题填空题1、已知等差数列公差d 0,a3a7=12,a4+a6=4,则 S20=_ 2、数列 an 中,若 a1,a2,a3成等差数列,a2,a3,a4成等比数列,a3,a4,a5的倒数又成等差数列,则a1,a3,a5成_数列3、已知 an 为等差数列,a1=1,S10=100,an=_.令 an=log2bn,则的前五项之和S5=_ 4、已知数列)2)(1(1,201,121,61nn则其前 n 项和 Sn=_.5、数列前 n 项和为 Sn=n2+3n,则其通项an等于 _.6、等差数列 an中,前 4 项和为 26,后 4 项之和为110,且 n 项和为 187,则 n 的值为 _.7、已知等差数列an的公差 d0,且 a1,a3,a9成等比数列,1042931aaaaaa的值是 _.8、等差数列 an中,S6=28,S10=36(Sn为前 n 项和),则 S15等于 _.9、等比数列 an中,公比为 2,前 99 项之和为56,则 a3+a6+a9+a99等于 _.10、等差数列 an中,a1=1,a10=100,若存在数列 bn,且 an=log2bn,则 b1+b2+b3+b4+b5等于 _.11、已知数列1,3,2,1nnnnnn,前 n 项的和为 _.12、已知 an是等差数列,且有 a2+a3+a10+a11=48,则 a6+a7=_.13、等比数列 an中,a1+a2+a3+a4=80,a5+a6a7+a8=6480,则 a1必为 _.14、三个数a1、1、c1成等差数列,而三个数a2、1、c2成等比数列,则22caca等于 _.15、已知1lg,2x,lgy 成等比数列,且 x1,y1,则 x、y 的最小值为 _.16、在数列 an 中,5221nnnaaa,已知 an 既是等差数列,又是等比数列,则an 的前 20 项的和为 _.17、若数列 an,)1)(2(1,3211nnaaann且(nN),则通项 an=_.18、已知数列 an中,nnaaa)12(,22314(n1),则这个数列的通项公式an=_.19、正数 a、b、c 成等比数列,x 为 a、b 的等差中项,y 为 b、c 的等差中项,则acxy的值为 _.20、等比数列 an中,已知 a1a2a3=1,a2+a3+a4=47,则 a1为_.答案1、1802、等比 3、2n1,3624、)2(2 nn5、2n+2.6、11.7、16138、249、32 10、68211、21n12、2413、4 或 2.14、1 或3115、21016、100.17、1167n18、212n19、2.20、2 或32大题训练 50 题1 数列 na 的前 n 项和为nS,且满足11a,2(1)nnSna.(1)求 na的通项公式;(2)求和 Tn=1211123(1)naana.2 已知数列na,a1=1,点*)(2,(1NnaaPnn在直线0121yx上.(1)求数列na的通项公式;(2)函数)2*,(1111)(321nNnanananannfn且,求函数)(nf最小值.3 已知函数xabxf)(a,b 为常数)的图象经过点P(1,81)和 Q(4,8)(1)求函数)(xf的解析式;(2)记 an=log2)(nf,n 是正整数,nS是数列 an的前 n 项和,求nS的最小值。4 已知 yf(x)为一次函数,且f(2)、f(5)、f(4)成等比数列,f(8)15求nSf(1)f(2)f(n)的表达式5 设数列na的前 n项和为nS,且1nnScca,其中 c是不等于1和 0 的实常数.(1)求证:na为等比数列;(2)设数列na的公比 qf c,数列nb满足111,23nnbbfbnN n,试写出1nb的通项公式,并求12231nnb bb bbb的结果.6 在平面直角坐标系中,已知 An(n,an)、Bn(n,bn)、Cn(n-1,0)(nN*),满足向量1nnAA与向量nnCB共线,且点 Bn(n,bn)(nN*)都在斜率为6 的同一条直线上.(1)试用 a1,b1与 n 来表示 an;(2)设 a1=a,b1=-a,且 120,且 a2、a5、a14分别是等比数列 bn的第二项、第三项、第四项.()求数列 an、bn 的通项 an、bn;()设数列 cn对任意的nN*,均有2211bcbc+nnbcan+1成立,求c1+c2+c2005的值.20已知数列 na 满足11a,且),2(22*1Nnnaannn且(1)求证:数列 nna2是等差数列;(2)求数列 na 的通项公式;(3)设数列 na 的前n项之和nS,求证:322nSnn。21设数列 an的前 n 项和为nS=2n2,bn为等比数列,且a1=b1,b2(a2a1)=b1。(1)求数列 an和bn 的通项公式;(2)设 cn=nnba,求数列 cn的前 n 项和 Tn.22已知函数()f x与函数(1)ya x(a0)的图象关于xy对称.(1)求()f x;(2)若无穷数列na满足1121,nnaSaaa,且点(,)nnnPaS均在函数()yf x上,求a的值,并求数列1na的所有项的和(即前n项和的极限)。23已知函数)(,1,13)(11Nnafaaaxxxfnnn满足数列文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5(1)求证:数列1na是等差数列;(2)若数列nb的前 n 项和.,122211nnnnnnTabababTS求记24已知数列na和nb满足:11a,22a,0na,1nnnba a(*nN),且nb是以q为公比的等比数列(I)证明:22nnaa q;(II)若2122nnncaa,证明数列nc是等比数列;(III)求和:1234212111111nnaaaaaa25已知 a1=2,点(an,an+1)在函数 f(x)=x2+2x 的图象上,其中n=1,2,3,(1)证明数列 lg(1+an)是等比数列;(2)设 Tn=(1+a1)(1+a2)(1+an),求数列 an的通项及Tn;26等差数列na是递增数列,前n 项和为nS,且 a1,a3,a9成等比数列,255aS(1)求数列na的通项公式;(2)若数列nb满足121nnnaannb,求数列nb的前 n 项的和27已知向量11(2,),(,2),()nnnnaabanN*且11a.若a与b共线,(1)求数列na的通项公式;(2)求数列na的前n项和nS.28已知:数列na满足Nanaaaann,333313221.(1)求数列na的通项;(2)设,nnanb求数列nb的前 n 项和 Sn.29对负整数a,数310,66,32aaaa可构成等差数列.(1)求 a 的值;(2)若数列na满足)(211Nnaaannn首项为0a,令nnnab)2(,求nb的通项公式;若对任意1212nnaaNn有,求0a取值范围.30数列.23,5,21221nnnnaaaaaa满足文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5(1)求证:数列1nnaa是等比数列;(2)求数列 na的通项公式;(3)若.,nnnnSnbnab项和的前求数列31已知二次函数()yf x的图像经过坐标原点,其导函数为()62fxx,数列na的前 n 项和为nS,点(,)()nn SnN均在函数()yf x的图像上。()、求数列na的通项公式;()、设13nnnaab,nT是数列nb的前 n 项和,求使得20nmT对所有nN都成立的最小正整数 m;32已知数列 an的前 n 项和为 Sn,且满足)2(02,2111nSSaannn()判断1nS是否为等差数列?并证明你的结论;()求Sn和 an()求证:.4121.22221nSSSn33若nA和nB分别表示数列na和nb的前n项和,对任意正整数n有nABnannn13124,232。(1)求nA;(2)求数列nb的通项公式;(3)设 集 合,4|,2|*NnbyyYNnaxxXnn,若 等 差 数 列nc的 任 一 项1,cYXcn是YX的最大数,且125265mc,求nc的通项公式。34已知点列),(nnnbaP在直线 l:y=2x+1 上,P1为直线 l 与 y 轴的交点,等差数列 an 的公差为)(1*Nn()求 an、bn的通项公式;())2(|11nPPnCnn,求和:C2+C3+Cn;()若)2(211naddnnn,且 d1=1,求证数列2ndn为等比数列:求dn的通项公式35已知数列na是首项为114a,公比14q的等比数列,设1423lognnba()nN,数列nc满足nnncab.()求证:数列nb成等差数列;文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5()求数列nc的前 n 项和nS;()若2114ncmm对一切正整数n 恒成立,求实数m 的取值范围36已知数列 an的前 n 项和为 Sn(0nS),且*11120(2,),.2nnnaS SnnaN(1)求证:1nS是等差数列;(2)求 an;(3)若2(1)(2)nnbn an,求证:222231.nbbb37已知()|23f xx xax()当4a,25x时,问x分别取何值时,函数()f x取得最大值和最小值,并求出相应的最大值和最小值;()若()f x在 R 上恒为增函数,试求a的取值范围;()已 知 常 数4a,数 列na满 足1()3()nnnf aanNa,试 探 求1a的 值,使 得 数 列()nanN成等差数列38在数列12,2,11nnnnaaaaa已知中(I)求数列na的通项公式;(II)求证:3)1()1()1(2211nnaaaaaa39设函数f(x)的定义域为),0(,且对任意正实数x,y 都有)()()(yfxfyxf恒成立,已知.0)(,11)2(xfxf时且(1)求)21(f的值;(2)判断),0()(在xfy上单调性;(3)一个各项均为正数的数列an 满足:)(1)1()()(NnafafSfnnn其中 Sn是数列 an的前 n项和,求Sn与 an的值.40已知定义在(1,1)上的函数f(x)满足1)21(f,且对 x,y)1,1(时,有)1()()(xyyxfyfxf。(I)判断)(xf在(1,1)上的奇偶性,并证明之;(II)令21112,21nnnxxxx,求数列)(nxf的通项公式;(III)设 Tn为数列)(1nxf的前 n 项和,问是否存在正整数m,使得对任意的*Nn,有34mTn成文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5立?若存在,求出m 的最小值;若不存在,则说明理由。41已知1()1fxx,且*11()()(1,)nnfxffxnnN(1)求()nfx*()nN的表达式;(2)若关于x的函数2*12()()()()nyxfxfxfx nN在区间(-,-1上的最小值为12,求n的值。42设不等式组所表示的平面区域为,记内的整点个数为。(整点即横坐标和纵坐标均为整数的点)(I)求数列的通项公式;(II)记数列的前n 项和为,且,若对于一切的正整数n,总有,求实数m 的取值范围。43在数列na中,1112(2)2()nnnnaaanN,其中0()求数列na的通项公式;()求数列na的前n项和nS;()证明存在kN,使得11nknkaaaa对任意nN均成立44设数列 an是首项为4,公差为1 的等差数列,Sn为数列 bn的前 n 项和,且.22nnSn(I)求 an 及bn 的通项公式an和 bn.(II)若*,()(27)4(),nnanf nkNf kf kbn为正奇数问是否存在使为正偶数成立?若存在,求出k 的值;若不存在,说明理由;(III)若对任意的正整数n,不等式112101111(1)(1)(1)nnanabbb恒成立,求正数a 的取值范围.45函数)1,(122yNnxnxxy的最小值为,nnba 最大值为且14(),2nnnca b数列nC的前n项和为nS()求数列nc的通项公式;()若数列nd是等差数列,且nnSdnc,求非零常数c;()若1()()(36)nndf nnNnd,求数列()f n的最大项46设数列na的各项均为正数,它的前n项的和为nS,点(,)nnaS在函数2111822yxx的图像上;数列nb满足1111,()nnnnba baab其中nN求数列na和nb的通项公式;文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档编码:CO5I6T10X2C8 HD9S1R1C1U5 ZI10T4R9E4M5文档