2022年专升本高数一模拟题 .pdf
成人专升本高等数学模拟试题一一、选择题(每小题4 分,共 40 分。在每小题给出的四个选项中,只有一项符合题目要求的,把所选项前的字母填写在题后的括号中)1设函数00)1ln(sin)(xaxxxxf在0 x出连续,则:a等于A:0B:21C:1D:22设xy2sin,则:y等于A:x2cosB:x2cosC:x2cos2D:x2cos23过曲线xxyln上0M点的切线平行于直线xy2,则:切点0M的坐标为A:)0,1(B:)0,(eC:)1,(eD:),(ee4设)(xf为连续函数,则:xadttf)(等于A:)(tfB:)()(aftfC:)(xfD:)()(afxf5若0 x为)(xf的极值点,则:A:)(0 xf必定存在,且0)(0 xfB:)(0 xf必定存在,且)(0 xf不一定等于零C:)(0 xf不存在,或0)(0 xfD:)(0 xf必定不存在6dxx2sin1等于A:Cxsin1B:Cxsin1C:CxcotD:Cxcot7平面1:0132zyx与平面2:022yx的位置关系是A:垂直B:斜交C:平行不重合D:重合8设)tan(xyz,则:xz等于A:)(cos2xyyB:)(cos2xyyC:2)(1xyyD:2)(1xyy9设函数2222=,=zz x yx则2:2:4:4:0AyBxyCyD10微分方程0yy的通解是A:xeyB:xeyC:xCeyD:xCey二、填空题(每小题4 分,共 40 分)11xxx3sinlim1211lim21xxx13 设xeyx1,则:y14 设(2)3()nfxx,则:()(x)nf152121dxxx16设yyxyxz2223,则:xz17设CxFdxxf)()(,则:xdxxfcos)(sin18幂级数1!nnxn的收敛半径为19微分方程096yyy的通解为20曲线xxy63的拐点坐标是三、解答题21(本题满分8 分)设)(lim3)(23xfxxxfx,且)(lim2xfx存在,求:2lim()xf x22(本题满分8 分)设232sinttytax,求:dxdy23(本题满分8 分)计算:dxxx ln1文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D224(本题满分8 分)设232yxxyz,求:yxz225(本题满分8 分)求以xey1、xey22为特解的二阶线性常系数齐次微分方程.26(本题满分10 分)将函数2()2xfxxx展开成x的幂级数.27(本题满分10 分)设 D 是由曲线exxy,ln及 x 轴所围成的的平面区域求:(1)平面区域D 的面积 S;(2)D 绕 y 轴旋转一周所成的旋转体的体积V28(本题满分10 分)计算二重积分22Dxdxdyy,其中D由直线2,yyx及双曲线1xy所围成.成人专升本高等数学模拟试题参考答案1、C-+-+00000000sinsinlim()lim=lim=1,lim()lim=lim=1ln(1+x)ln(1+x)=0=lim()=lim()=(0)=axxxxxxxxxxxxf xf xxxxf xf xf因为在处连续,所以12、B 3、D 0=(xlnx)=1+ln,2.1+lnx=2,=.=lnM,xx ex eyx因为y有题意知切线在此点的斜率为所以解得把代入中得(e e)4、C 5、A 6、C 2211(cotx)=-,=-cot+sinsindxx cxx因为所以文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D27、A 11221212=1,-2,3,=2,1,0,=12+(-2)1+30=0,nnn n平面的法线向量平面的法线向量因为所以8、B 9、A 10、D 11、3 12、2 13、2(1+x)xxe14、6x(1)(2)32()(1)2()()()=3()=()=(3)=6nnnnfxfxxxfxfxxx因为(,所以(15、15ln222222222212112111=(1)=ln(1)+C121212115ln(1)=ln1222xxdxdxdxxxxxxdxxx因为,所以16、2-3xy17、(sinx)+CF(sin)cos(sin)(sin)(sinx)+Cfxxdxfx dxF18、0+1(+1)!1=!,lim=lim=lim(+1)=,R=0!nnnnnnanannan令因为所以收敛半径19、312(C+C x)ex20、(0,0)21、解:设2=l i m(x)xAf,则 有3(x)=x+3(*)fx A对(*)两 边 取 极 限322lim(x)=lim(x+3)xxfxA于是有=8+6AA解得:8=-5A所以28lim()=-5xf x22、解:322(sin)=cos=d(2)=(3+4)dtdxd atatdtdytttt22(3+4)dt3+4=coscosdyttttdxatdtat文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D223、解:111=x=(lnx)=ln(lnx)+Clnlnddx xx原式24、解:32322=4=3+4xxyzxyyxzyyxzyx即25、解:由题意知:1、2 是二阶线性常系数齐次微分方程特征方程的两根,于是可知特征方程为:所以以xey1、xey22为特解的二阶线性常系数齐次微分方程为:-3+2=0yyy26、解:2111111()(),(2)(1)3 2313112xf xxxxxxx011,22,212nnnxxx01(1),11.1nnnxxx0001111()(1)(1),11.3232nnnnnnnnnnfxxxxx27、解:区域 D 如图阴影部分所示。曲线xyln与 x 轴及ex的交点坐标分别为)1,(),0,1(e(1)平面区域D 的面积1)ln(dln|11eexxxxxS.(2)D 绕 y 轴旋转一周所成的旋转体的体积V12201122222001()dd(1).22|yyyVeeyeeyeee28、解:画出区域D的图形,如图,如图三个顶点分别为1(,2),(1,1),(2,2)2ABC由积分区域的形状可知,采用先x后y的积分次序较好,即先对x积分.22223122211111()3yyyDyxxdxdydydxxdyyyy2225411111 1127()()33 2464ydyyyyyOxy=lnx 1 e(e,1)Oxy y=x yx12128 题2-3+2=0rr文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2文档编码:CU1T1X7G4B3 HL2P10Z5O8R6 ZX8Y3X3B10D2