2022年专项练习题集-不等式恒成立问题 .pdf
20XX 年专项练习题集-不等式恒成立问题三级知识点:不等式恒成立问题介绍:不等式恒成立问题以含参不等式“恒成立”为载体,镶嵌函数、方程、不等式等内容,综合性强,能力要求高,为历年高考试题的热点。选择题1不等式2230mxmx对一切 xR 恒成立,则实数m的取值范围是()A30mB30mC30mD30m【分值】5【答案】D【易错点】容易忽略0m的情形。【考查方向】本题主要考查了含参数的二次不等式的恒成立问题。【解题思路】对m的分类讨论,(1)0m,(2)当0m时,结合二次函数图象,二次函数应该开口向下,判别式小于等于零,列出满足的条件求解【解析】当0m时不等式化为30恒成立;当0m时需满足00m,所以30m,综上可知实数a的取值范围是30m.2已知2()3f xaxbx,不等式0)(xf的解集是(1,3),若对于任意 1,2x,不等式()10f xm恒成立,m的取值范围是()A 14,10B(,10C(,14D 14,14【分值】5【答案】C【易错点】不会求出a,b 的值,不会转化恒成立问题。【考查方向】本题主要考查了函数的解析式,考查恒成立问题,解题的关键是利用好不等式的解集与方程解之间的关系,将恒成立问题转化为函数的最值加以解决【解题思路】(1)根据不等式的解集与方程解之间的关系可知230axbx的两根为1,3,从而可求,a b 的值,进而可求fx的解析式;(2)要使对于任意 1,2x,不等式()10f xm恒成立,只需min()10f xm即可,从而可求m的范围【解析】不等式()0f x的解集是(1,3),所以1和3是方程230axbx的两个根,由韦 达 定 理 得1,2ab 所 以2()23f xxx,所 以()10fxm恒 成 立 等 价于2213xxm恒成立,由22213(1)1414xxx,所以14m选 C3对任意的实数x,不等式30 xxa恒成立,则实数a的取值范围是()A0aB03aC3aD3a文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8【分值】5【答案】D【易错点】不会去掉绝对值,函数的最值。【考查方向】本题主要考查了含参数的绝对值不等式的恒成立问题。【解题思路】令()3f xxx,依题意,只需求得min()f x即可求得a的取值范围【解析】令3,3()323,3xfxxxxx,则min()3f x,所以min()3af x,即3a,故选 C.4若不等式290 xtx对于任意(0,)x都成立,则t的最大值是()A 0 B-6 C6 D 9【分值】5【答案】C【易错点】不会将变量t 分离出来。【考查方向】本题主要考查了含参数的二次不等式的恒成立问题以及分类变量法。【解题思路】首先根据不等式将t 分离出来,即9txx对任意(0,)x都成立,即min9txx【解 析】不 等 式290 xtx对 于 任 意(0,)x都 成 立 等 价 于9txx对 任 意文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8(0,)x都成立因为9926xxxx,所以只需6t即可故C 正确5若关于x的不等式2(2)120 xaxa对任意的 2,2a均成立,则x的取值范围是()A(,1)(3,)B(,5)(5,)C(,5)(3,)D(5,3)【分值】5【答案】C【易错点】不知道讲原不等式转化为关于a 的一次函数。【考查方向】本题主要考查了一元二次不等式恒成立问题,将恒成立问题转化为函数的最值加以解决【解题思路】可将a 视作自变量,则上述问题即可转化为在-2,2内关于 a 的一次函数大于 0 恒成立的问题.解:原不等式转化为2(2)210a xxx在 2,2a时恒成立,设2()(2)21f aa xxx,则()f a在-2,2 上恒大于 0,故有:(2)0(2)0ff即2243050 xxx解得:3155xxxx或或所以35xx或,故选 C.文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8填空6若函数()sincos3f xxax的图象始终在直线1y的上方,则a 的取值范围是_【分值】5【答案】(3,3)【易错点】不会利用辅助角公式对()sincos3f xxax进行变形,不会将()f x在1y的上方转化成()1f x恒成立。【考查方向】三角恒等变换和不等式恒成立问题。【解题思路】问题转化为()1f x恒成立,利用三角恒等变形以及三角函数的最值建立不等式,求出a 的范围。【解析】由()f x的图象始终在1y的上方,即()1f x恒成立,2()sincos31sin()31f xxaxax,即21sin()2ax恒成立,即22sin()1xa恒成立,所以2211a,解得33a7若关于x的不等式21xmxm恒成立,则实数m【分值】5【答案】2【易错点】判别式容易容易出现0。【考查方向】二次不等式恒成立问题。【解题思路】将不等式右边项移到左边,利用判别式0,求出m的值.文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8【解 析】原 不 等 式 可 变 为210 xmxm,0,2410mm,220m,2m.8已知1a,若关于x不等式1logaxx在区间0,2上恒成立,则实数a的取值范围是【分值】5【答案】4,【易错点】不会转化原不等式,不会利用数形结合处理本题。【考查方向】本题主要考查了反比例函数及其单调性、不等式恒成立问题,同时考查了数形结合的思想。【解题思路】由题意可转化为不等式1logaxx在区间0,2上恒成立,由图象可知,在区间0,2上,函数1yx的图象在函数logayx的图象的上方,从而可得解【解析】依题意1logaxx,则必有则必有11log 22aa,解得4a,所以实数a的取值范围4,综合题文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y89已知函数321()13f xaxx()xR其中0a,若在区间1,22上,()0f x恒成立,求a的取值范围【分值】6【答案】2 3183a【易错点】导数的计算与分类讨论。【考查方向】导数与不等式恒成立问题。【解题思路】对321()13fxaxx进行求导,判断利用导数求出321()13f xaxx的极值点,利用极值点与端点值的函数值大于0,解不等式,得到a 的取值范围。【解析】22()2()fxaxxax xa,由于0a,所以20a,对 a 进行讨论:(1)若01a,22a,于是当10 x时,()0fx;当02x时,()0fx。由1()022()0ffa,即1898aa,由01a,故无解。(2)若1a,22a,于是当10 x时,()0fx;当20 xa时,()0fx,当22xa时,()0fx。由1()02(2)0ff,即21843aa,解得2 3183a。综合(1)(2)得2 3183a。10 已知不等式2310axxa对于所有的实数x不等式恒成立,求a的取值范围.【分值】6 文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8【答案】152a【易错点】讨论时容易忽略0a的情形。【考查方向】本题主要考查了一元二次不等式恒成立问题。【解题思路】当0a时,经检验不满足条件;解得0a时,设2()31f xaxxa,则由题意可得094(1)0aa a,解出a 的范围即可【解析】当0a时,310 x,即当13x时不等式不恒成立,不满足条件;当0a时,设2()31f xaxxa,由于()0f x恒成立,则有094(1)0aa a,解得152a。文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R8 HE2J10K6F7V4 ZA8Y6O7J9Y8文档编码:CO3P5O6Z6R