2022年全国中考数学压轴题精选及解答 .pdf
2003 年全国中考数学压轴题精选11、(2003 年安徽省)(本题满分14 分)如图,这些等腰三角形与正三角形的形状有差异,我们把这与正三角形的接近程度称为“正度”。在研究“正度”时,应保证相似三角形的“正度”相等。设等腰三角形的底和腰分别为a、b,底角和顶角分别为、。要求“正度”的值是非负数。同学甲认为:可用式子|ab|来表示“正度”,|ab|的值越小,表示等腰三角形越接近正三角形;同学乙认为:可用式子|来表示“正度”,|的值越小,表示等腰三角形越接近正三角形。探究:(1)他们的方案哪个较合理,为什么?(2)对你认为不够合理的方案,请加以改进(给出式子即可);(3)请再给出一种衡量“正度”的表达式bba第 24题图(2003 年安徽省)附加题:(共两小题,每小题10 分,共 20 分)报考理科实验班的学生必做,不考理科实验班的学生不做)1、要将 29 个数学竞赛的名额分配给10 所学校,每所学校至少要分到一个名额。(1)试提出一种分配方案,使得分到相同名额的学校少于4 所;(2)证明:不管怎样分配,至少有3 所学校得到的名额相同;(3)证明:如果分到相同名额的学校少于4 所,则 29 名选手至少有5 名来自同一学校。12、(南宁市 2003 本题满分 12 分)如图 12 所示,已知A、B 两点的坐标分别为(28,0)和(0,28),动点 P 从 A 点开始在线段 AO上以每秒3 个长度单位的速度向原点O运动。动直线EF从x轴开始以每秒1 个长度单位的速度向上平行移动(即EFx轴),并且分别与y轴、线段AB交于 E、F 点。连结 EP,设动点P与动直线EF同时出发,运动时间为t秒。(1)当t1 秒时,求梯形OPFE的面积。t为何值时,梯形OPFE的面积最大,最大面积是多少?(2)当梯形OPFE 的面积等于三角形APF的面积时求线段PF的长;(3)设t的值分别取1t、2t时(1t2t),所对应的三角形分别为AF1P1和 AF2P2。试判断这两个三角形是否相似,请证明你的判断。A(28,0)B(0,28)xy图 1230频率EFPO文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J113、(广州市2003 本题满分16 分)现计划把甲种货物1240 吨和乙种货物880 吨用一列货车运往某地,已知这列货车挂有A、B 两种不同规格的货车厢共40 节,使用A型车厢每节费用为6000 元,使用B型车厢每节费用为 8000 元(1)设运送这批货物的总费用为y 万元,这列货车挂A 型车厢 x 节,试写出y 与 x 之间的函数关系式;(2)如果每节A型车厢最多可装甲种货物35 吨和乙种货物15 吨,每节 B 型车厢最多可装甲种货物25 吨和乙种货物35 吨,装货时按此要求安排A、B 两种车厢的节数,那么共有哪几种安排车厢的方案?(3)在上述方案中,哪个方案运费最省?最少运费为多少元?文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J114、(福建省三明市 2003 14分)已知:如图,E、F、G、H按照 AE CG,BFDH,BFnAE(n是正整数)的关系,分别在两邻边长a、na的矩形 ABCD 各边上运动,设AE x,四边形 EFGH 的面积为S。(1)当n1、2 时,如图,观察运动情况,写出四边形EFGH 各顶点运动到何位置,使SABCDS矩形21(3 分)(2)当n3 时,如图,求S与x之间的函数关系式(写出自变量x的取值范围),探索S随x增大而变得化的规律;猜想四边形EFGH各顶点运动到何位置使SABCDS矩形21(6 分)(3)当nk(k 1)时,你所得到的规律和猜测是否成立,请说明理由。(5 分)(考生注意:你在本题研究中,如果能发现新的结论,并说明结论正确的理由,将酌情另加 35 分)naa第 27 题图HGFEDCBAaa第 27 题图HGFEDCBAa2a第 27 题图HGFEDCBAa3a第 27 题图HGFEDCBA文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J115、(2003 年福建省泉州市 13 分)周末某班组织登山活动,同学们分甲、乙两组从山脚下沿着一条道路同时向山顶进发。设甲、乙两组行进同一段所用的时间之比为23。(1)直接写出甲、乙两组行进速度之比;(2)当甲组到达山顶时,乙组行进到山腰A处,且 A处离山顶的路程尚有1.2 千米。试问山脚离山顶的路程有多远?(3)在题(2)所述内容(除最后的问句外)的基础上,设乙组从A 处继续登山,甲组到达山顶后休息片刻,再从原路下山,并且在山腰B处与乙组相遇。请你先根据以上情景提出一个相应的问题,再给予解答(要求:1 问题的提出不得再增添其他条件;2问题的解决必须利用上述情景提供的所有已知条件)文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1参考解答11、2003 年安徽省(本题满分14 分)解:(1)同学乙的方案较为合理。因为|-|的值越小,与 越接近 600,因而该等 腰 三 角 形 越 接 近 于 正 三 角 形,且 能 保 证 相 似 三 角 形 的“正 度”相等。2 分同学甲的方案不合理,不能保证相似三角形的“正度”相等。如:边长为4,4,2 和边长为8,8,4的两个等腰三角形相似,但|2-4|=2|4-8|=4 6 分(2)对同学甲的方案可改为用kbbakaba,等(k 为正数)来表示“正度”10分(3)还可用202000060260311206060,等来表示“正度”说明:本题只要求学生在保证相似三角形的“正度”相等的前提下,用式子对“正度”作大致的刻画,第(2)、(3)小题都是开放性问题,凡符合要求的均可。理科实验班试题:(共两小题,每小题10 分,共 20 分)1、解:(1)满足要求的分配方案有很多,如:学校 1 2 3 4 5 6 7 8 9 10 名额 1 1 1 2 2 2 3 3 7 7 2分(2)假设没有3 所学校得到相同的名额,而每校至少要有1 名,则人数最少的分配方案是:每两所学校一组依次各得1,2,3,4,5 个名额,总人数为2(1+2+3+4+5)=30。但现 在 只 有29个 名 额,故 不 管 如 何 分 配,都 至 少 有3 所 学 校 分 得 的 名 额 相同。6分(3)假设每所学校分得的名额都不超过4,并且每校的名额不少于1,则在分到相同名额的学校少于4 所的条件下,10 所学校派出的选手数最多不会超过3 4+33+32+11=28,这 与 选 手 总 数 是29 矛 盾,从 而 至 少 有 一 所 学 校 派 出 的 选 手 数 不 小 于5。10 分2、证明:取A1A5中点 B3,连结 A3B3、A1A3、A1A4、A3A5 2 分541321411321541113214113AAAAAAABAAAASSBABABAAASSABBA的面积相等与四边形四边形又文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1分同理可证上的高相等边与分同理1054215524341325321543154541543543541543321AAAAAAAAAAAAAAAAAAAAAAAAAAAASSSSAAAAAAAAAAAA/,/,/,/B3A2A3A4A5A1B112、(南宁市 2003 本题满分 12 分)解:(1)当1t秒时,1OE3AP25328OP,OBOAEFOA 27128EBEF(1 分)2)(OEEFOPSOPFE梯形21)2725(26(2 分)228328ttS(3 分)tt282298)7(22t(4 分)文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1当7t秒时,梯形OPFE的面积最大,最大面积等于98 (5 分)(2)2)456(2)28328(tttttSOPFE梯形SAFP23tt当OPFES梯形SAFP时有:232)456(2ttt(6 分)0,3456ttt81t(秒),02t(舍去)(7 分)过点F作FHAO,垂足为H45OAB168838PHFHAH在 RtFHP中,22PHFHFP(8 分)22168(9 分)58(3)相似(10 分)证明:分别过点F1、F2作F1H1AP2,F2H2AP2,垂足分别为H1、H2 45OAB AH1=F1H1=t1,AH2=F2H2=t2 112tAF,222tAF2121ttAFAF(11 分)又113tAP,223tAP21212133ttttAPAP212121ttAFAFAPAP且OABOAB11PAF22PAF(12 分)文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W1P8J1文档编码:CG8L6P3C5H5 HS5M2I7L6N3 ZF1L7W