欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2022年函数及其基本性质知识点总结4 .pdf

    • 资源ID:58191606       资源大小:113.45KB        全文页数:6页
    • 资源格式: PDF        下载积分:4.3金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要4.3金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2022年函数及其基本性质知识点总结4 .pdf

    1.2 函数及其表示【1.2.1】函数的概念(1)函数的概念设A、B是两个非空的数集,如果按照某种对应法则f,对于集合A中任何一个数x,在集合B中都有唯一确定的数()f x和它对应,那么这样的对应(包括集合A,B以及A到B的对应法则f)叫做集合A到B的一个函数,记作:fAB函数的三要素:定义域、值域和对应法则只有定义域相同,且对应法则也相同的两个函数才是同一函数(2)区间的概念及表示法设,a b是两个实数,且 ab,满足 axb的实数x的集合叫做闭区间,记做,a b;满足 axb的实数x的集合叫做开区间,记做(,)a b;满足 axb,或 axb 的实数x的集合叫做半开半闭区间,分别记做,)a b,(,a b;满足,xa xa xb xb的实数x的集合分别记做,),(,),(,(,)aabb注意:对于集合|x axb与区间(,)a b,前者a可以大于或等于 b,而后者必须 ab(3)求函数的定义域时,一般遵循以下原则:()f x是整式时,定义域是全体实数()f x是分式函数时,定义域是使分母不为零的一切实数()f x是偶次根式时,定义域是使被开方式为非负值时的实数的集合对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于 1tanyx 中,()2xkkZ零(负)指数幂的底数不能为零若()f x是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集对于求复合函数定义域问题,一般步骤是:若已知()f x的定义域为,a b,其复合函数()f g x的定义域应由不等式()ag xb解出对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义(4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值因此求函数的最值与值域,其实质是相同的,只是提问的角度不同求函数值域与最值的常用方法:观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值判别式法:若函数()yf x可以化成一个系数含有y的关于x的二次方程2()()()0a y xb y xc y,则在()0a y时,由于,x y为实数,故必须有2()4()()0bya yc y,从而确定函数的值域或最值不等式法:利用基本不等式确定函数的值域或最值换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值数形结合法:利用函数图象或几何方法确定函数的值域或最值函数的单调性法【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种解析法:就是用数学表达式表示两个变量之间的对应关系列表法:就是列出表格来表示两个变量之间的对应关系图象法:就是用图象表示两个变量之间的对应关系(6)映射的概念设A、B是两个集合,如果按照某种对应法则f,对于集合A中任何一个元素,在集合B中都有唯一的元素和它对应,那么这样的对应(包括集合A,B以及A到B的对应法则f)叫做集合A到B的映射,记作:fAB文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4yxo给定一个集合A到集合B的映射,且,aA bB 如果元素a和元素 b 对应,那么我们把元素 b叫做元素a的象,元素a叫做元素 b 的原象1.3 函数的基本性质【1.3.1】单调性与最大(小)值(1)函数的单调性定义及判定方法函数的性 质定义图象判定方法函数的单调性如果对于属于定义域I内某个区间上的任意两个自变量的值 x1、x2,当 x1 x2时,都有f(x 1)f(x 2),那么就说 f(x)在这个区间上是增函数x1x2y=f(X)xyf(x)1f(x)2o(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象上升为增)(4)利用复合函数如果对于属于定义域I内某个区间上的任意两个自变量的值 x1、x2,当 x1f(x 2),那么就说 f(x)在这个区间上是减函数y=f(X)yxoxx2f(x)f(x)211(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象下降为减)(4)利用复合函数在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数对于复合函数()yf g x,令()ug x,若()yf u为增,()ug x为增,则()yf g x为增;若()yf u为减,()ug x为减,则()yf g x为增;若()yf u为增,()ug x为减,则()yf g x为减;若()yf u为减,()ug x为增,则()yf g x为减(2)打“”函数()(0)af xxax的图象与性质()f x分别在(,a、,)a上为增函数,分别在,0)a、(0,a上为减函数(3)最大(小)值定义文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4一般地,设函数()yf x的定义域为 I,如果存在实数M满足:(1)对于任意的 xI,都有()fxM;(2)存在0 xI,使得0()f xM那么,我们称M是函数()f x的最大值,记作max()fxM一般地,设函数()yf x的定义域为 I,如果存在实数m满足:(1)对于任意的 xI,都有()f xm;(2)存在0 xI,使得0()f xm那么,我们称m是函数()f x的最小值,记作max()fxm【1.3.2】奇偶性(4)函数的奇偶性定义及判定方法函数的性 质定义图象判定方法函数的奇偶性如果对于函数f(x)定义域内任意一个 x,都有 f(x)=f(x),那么函数 f(x)叫做奇函数(1)利 用 定 义(要先判断定义域是否关于原点对称)(2)利 用 图 象(图象关于原点对称)如果对于函数f(x)定义域内任意一个 x,都有 f(x)=f(x),那 么函 数 f(x)叫 做 偶 函数(1)利 用 定 义(要先判断定义域是否关于原点对称)(2)利 用 图 象(图象关于y 轴对称)若函数()f x为奇函数,且在0 x处有定义,则(0)0f奇函数在y轴两侧相对称的区间增减性相同,偶函数在y轴两侧相对称的区间增减性相反在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4高考函数及其基本性质考点解析考点一:函数定义域1、函数2211yxx的定义域是()A.1,1B.(-1,1)C.-1,1 D.(-,-1)(1,+)2、11232yxxx考点二:函数值域1、31yx,x1,2,3,4,5 (观察法 )246yxx,x 1,5(配方法:形如2yaxbxc)21yxx(换元法:形如yaxbcxd)1xyx(分离常数法:形如cxdyaxb)221yxx(判别式法:形如21112222a xb xcya xb xc)2、设函数2()2()g xxxR,222,()()2,()xxxg xf xxxxg x,则()f x的值域是(A)9,0(1,)4(B)0,)(C)9,)4(D)9,0(2,)4考点三:分段函数1、已知函数510320 xxxxf x,求 f(1)+f(1)的值2、已知函数2122111fxxxxxxf x,求 f f(4)的值3、已知函数232,1,(),1,xxf xxax x若(0)4ffa,则实数 a.文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G44、已知函数21,0()1,0 xxf xx,则满足不等式2(1)(2)fxfx的 x 的范围是 _ _ 考点四:函数单调性(最值)、函数奇偶性1.如果函数2()2(1)2f xxax在区间(,4上是减函数,那么实数a 的取值范围是.2.如果二次函数2()1)5f xxax(在区间1(,1)2上是增函数,(2)f的取值范围.3(2008 全国)函数1()f xxx的图像关于()A y 轴对称 B 直线xy对称C 坐标原点对称 D 直线xy对称4二次函数21yxmx是偶函数,则函数的增区间为()A0,)B(,0 C1,)D 1,)5.下列函数中,是奇函数且在(0,)上为增函数的是 ()A3yxx B1yxx C1yxx D3yx6(2007年宁夏)设函数xaxxxf1为奇函数,则实数a7若函数1,0(),0 xxf xaxb x为偶函数,则()f ab8已知偶函数()f x在(0,)上为增函数,且(2)0f,解不等式:(23)0fx9设奇函数()f x在(0),上为增函数,且(1)0f,则()0f x的解集为()A(1,)B(,1)U(0,1)C(,1)D(1,)U(,1)10设偶函数()f x在),0上为减函数,则不等式()(21)f xfx的解集是11函数2()f xxx在区间 2,3 上的最大值为文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4文档编码:CL7Q6R10T1G5 HX6B7W9C4S8 ZF3H9R4Z3G4

    注意事项

    本文(2022年函数及其基本性质知识点总结4 .pdf)为本站会员(Q****o)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开