欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    数列基础知识点和方法归纳(共8页).docx

    • 资源ID:5833863       资源大小:159.29KB        全文页数:8页
    • 资源格式: DOCX        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    数列基础知识点和方法归纳(共8页).docx

    精选优质文档-倾情为你奉上数列基础知识点和方法归纳 1. 等差数列的定义与性质定义:(为常数),推论公式:an=am+n-mdn,mN*,n>m等差中项:成等差数列,an=an-1+an+12,2an=an-1+an+1n2等差数列前项和:性质:是等差数列(1)若,则(下标和定理) 注意:要求等式左右两边项数相等(2)数列仍为等差数列,仍为等差数列,公差为;(3)若三个成等差数列,可设为;(4)若是等差数列,且前项和分别为,则;(5)为等差数列(为常数,是关于的常数项为0的二次函数)的最值可求二次函数的最值;或者求出中的正、负分界项,即:当,解不等式组可得达到最大值时的值. 当,由可得达到最小值时的值. (6)项数为偶数的等差数列,有, .(7)项数为奇数的等差数列,有, , .2. 等比数列的定义与性质定义:(为常数,),.推论公式:an=amqn-mn,mN*且n>m等比中项:成等比数列,或.等比数列中奇数项同号,偶数项同号 an2=an-1an+1n2等比数列前n项和公式: Sn=na1q=1a11-qn1-q=a1-anq1-qq1性质:是等比数列(1)若,则(下标和定理) 注意:要求等式左右两边项数相等。(2)仍为等比数列,公比为。. (3)是正项等比数列,则logcan是等比数列。 注意:由求时应注意什么?时,;时,.3.求数列通项公式的常用方法(1) 定义法求通项公式(已知数列为等差数列或等比数列)(2) 已知或,求。 例: 数列的前项和求数列的通项公式; 解:当时 , 当时 数列的通项公式为练习:设数列的前项和为,且求数列的通项公式。 (3)求差(商)法例:数列,求 解: 时, 时, 得:,练习:在数列an中,a1=1,a1+a222+a332+ann2=annN*, 求数列an的通项公式。(4)累乘法 形如an+1an=fn的递推式由,则两边分别相乘得, 例:数列中,求 解 ,又,.练习:已知a1=3,an+1=3n-13n+2an(n1), 求数列an的通项公式。(5)累加法形如 an+1-an=fn的递推式。由,求,用迭加法时,两边相加得 例:已知数列满足a1=1,an=an-1+3n-2n2,1求a2与a3的值。 (2)求数列的通项公式 练习:已知数列中, ,()求数列的通项公式;(6)构造法形如(为常数,)的递推式。可转化为等比数列,设令,是首项为为公比的等比数列,例:已知数列满足,.求数列的通项公式; 解:(1), 而,故数列是首项为2,公比为2的等比数列, ,因此练习1:已知数列an中a1=12,an+1=3an+3,求数列的通项公式。练习2:已知数列满足,求数列的通项公式。(7)倒数法例:,求由已知得:,为等差数列,公差为, 练习:已知数列的首项,a1=1。an+1=anan+2nN*求数列的通项公式。总结:公式法、利用、累加法、累乘法.构造等差或等比或、待定系数法、对数变换法、迭代法。4. 求数列前n项和的常用方法(1)定义法:如果已知数列为等差或者等比数列,这用对应的公式求和等差数列前项和:等比数列前n项和公式: Sn=na1q=1a11-qn1-q=a1-anq1-qq1常见公式:Sn=k=1nk=12nn+1 1+3+5+2n-1=n2 12+22+32+n2=16nn+12n+1 , 13+23+33+n3=14nn+12(2)错位相减法给Sn=a1+a2+a3+an两边同乘以一个适当的数或者式,然后把所得的等式与原等式相减,对应项互相抵消,最后得出前n项的和Sn.一般适用于为等差数列,为等比数列,求数列(差比数列)前项和,可由,求,其中为的公比. 例: · 时,时,练习:已知数列是等差数列,是等比数列,且, (1)求数列和的通项公式(2)数列满足,求数列的前项和(2) 裂项法把数列的通项公式拆成两项差的形式,相加过程中消去中间项,只剩下有限项再求和。常见形式:若是公差为的等差数列,则1anan+1=1d1an-1an+1 12n-12n+1=1212n-1-12n+1 1nn+1n+2=121nn+1-1n+1n+2 1a+b=1a-ba-b 1n+k+n=1kn+k-n 如:是公差为的等差数列,求解:由练习:已知数列的前n项和,   求数列的通项公式;   求数列的前n项和。(3)倒序相加法把数列的各项顺序倒写,再与原来顺序的数列相加. 相加练习已知,则 由原式(3) 分组求和法有一类数列,既不是等差数列也不是等比数列,若将这个数列适当拆分开,可分为几个等差或等比或常见数列,然后分别求和,再将其合并即可。一般适用于为等差数列,为等比数列,求数列an+bn前项和。练习:已知数列为等差数列,公差为d,为等比数列,公比为q,且d=q=2, b3+1=a10=5,Cn=log2bn 求cn的通项公式, 求an+bn的前n项和Sn。专心-专注-专业

    注意事项

    本文(数列基础知识点和方法归纳(共8页).docx)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开