欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2023年人教版高中数学选修部分知识点总结理科.doc

    • 资源ID:58561134       资源大小:2.40MB        全文页数:32页
    • 资源格式: DOC        下载积分:9金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要9金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2023年人教版高中数学选修部分知识点总结理科.doc

    高二数学选修21知识点第一章 常用逻辑用语1、命题:用语言、符号或式子表达的,可以判断真假的陈述句.真命题:判断为真的语句.假命题:判断为假的语句.2、“若,则”形式的命题中的称为命题的条件,称为命题的结论.3、对于两个命题,假如一个命题的条件和结论分别是另一个命题的结论和条件,则这两个命题称为互逆命题.其中一个命题称为原命题,另一个称为原命题的逆命题.若原命题为“若,则”,它的逆命题为“若,则”.4、对于两个命题,假如一个命题的条件和结论恰好是另一个命题的条件的否认和结论的否认,则这两个命题称为互否命题.中一个命题称为原命题,另一个称为原命题的否命题.若原命题为“若,则”,则它的否命题为“若,则”.5、对于两个命题,假如一个命题的条件和结论恰好是另一个命题的结论的否认和条件的否认,则这两个命题称为互为逆否命题.其中一个命题称为原命题,另一个称为原命题的逆否命题.若原命题为“若,则”,则它的否命题为“若,则”.6、四种命题的真假性:原命题逆命题否命题逆否命题真真真真真假假真假真真真假假假假四种命题的真假性之间的关系:两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系7、若,则是的充足条件,是的必要条件若,则是的充要条件(充足必要条件)8、用联结词“且”把命题和命题联结起来,得到一个新命题,记作当、都是真命题时,是真命题;当、两个命题中有一个命题是假命题时,是假命题用联结词“或”把命题和命题联结起来,得到一个新命题,记作当、两个命题中有一个命题是真命题时,是真命题;当、两个命题都是假命题时,是假命题对一个命题全盘否认,得到一个新命题,记作若是真命题,则必是假命题;若是假命题,则必是真命题9、短语“对所有的”、“对任意一个”在逻辑中通常称为全称量词,用“”表达具有全称量词的命题称为全称命题全称命题“对中任意一个,有成立”,记作“,”短语“存在一个”、“至少有一个”在逻辑中通常称为存在量词,用“”表达具有存在量词的命题称为特称命题特称命题“存在中的一个,使成立”,记作“,”10、全称命题:,它的否认:,全称命题的否认是特称命题第二章 圆锥曲线与方程11、平面内与两个定点,的距离之和等于常数(大于)的点的轨迹称为椭圆这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距12、椭圆的几何性质:焦点的位置焦点在轴上焦点在轴上图形标准方程范围且且顶点、轴长短轴的长 长轴的长焦点、焦距对称性关于轴、轴、原点对称离心率准线方程13、设是椭圆上任一点,点到相应准线的距离为,点到相应准线的距离为,则14、平面内与两个定点,的距离之差的绝对值等于常数(小于)的点的轨迹称为双曲线这两个定点称为双曲线的焦点,两焦点的距离称为双曲线的焦距15、双曲线的几何性质:焦点的位置焦点在轴上焦点在轴上图形标准方程范围或,或,顶点、轴长虚轴的长 实轴的长焦点、焦距对称性关于轴、轴对称,关于原点中心对称离心率准线方程渐近线方程16、实轴和虚轴等长的双曲线称为等轴双曲线17、设是双曲线上任一点,点到相应准线的距离为,点到相应准线的距离为,则18、平面内与一个定点和一条定直线的距离相等的点的轨迹称为抛物线定点称为抛物线的焦点,定直线称为抛物线的准线19、过抛物线的焦点作垂直于对称轴且交抛物线于、两点的线段,称为抛物线的“通径”,即20、焦半径公式:若点在抛物线上,焦点为,则;若点在抛物线上,焦点为,则;若点在抛物线上,焦点为,则;若点在抛物线上,焦点为,则21、抛物线的几何性质:标准方程图形顶点对称轴轴轴焦点准线方程离心率范围第三章 空间向量与立体几何22、空间向量的概念:在空间,具有大小和方向的量称为空间向量向量可用一条有向线段来表达有向线段的长度表达向量的大小,箭头所指的方向表达向量的方向向量的大小称为向量的模(或长度),记作模(或长度)为的向量称为零向量;模为的向量称为单位向量与向量长度相等且方向相反的向量称为的相反向量,记作方向相同且模相等的向量称为相等向量23、空间向量的加法和减法:求两个向量和的运算称为向量的加法,它遵循平行四边形法则即:在空间以同一点为起点的两个已知向量、为邻边作平行四边形,则以起点的对角线就是与的和,这种求向量和的方法,称为向量加法的平行四边形法则求两个向量差的运算称为向量的减法,它遵循三角形法则即:在空间任取一点,作,则24、实数与空间向量的乘积是一个向量,称为向量的数乘运算当时,与方向相同;当时,与方向相反;当时,为零向量,记为的长度是的长度的倍25、设,为实数,是空间任意两个向量,则数乘运算满足分派律及结合律分派律:;结合律:26、假如表达空间的有向线段所在的直线互相平行或重合,则这些向量称为共线向量或平行向量,并规定零向量与任何向量都共线27、向量共线的充要条件:对于空间任意两个向量,的充要条件是存在实数,使28、平行于同一个平面的向量称为共面向量29、向量共面定理:空间一点位于平面内的充要条件是存在有序实数对,使;或对空间任一定点,有;或若四点,共面,则30、已知两个非零向量和,在空间任取一点,作,则称为向量,的夹角,记作两个向量夹角的取值范围是:31、对于两个非零向量和,若,则向量,互相垂直,记作32、已知两个非零向量和,则称为,的数量积,记作即零向量与任何向量的数量积为33、等于的长度与在的方向上的投影的乘积34、若,为非零向量,为单位向量,则有;,;35、向量数乘积的运算律:;36、若,是空间三个两两垂直的向量,则对空间任历来量,存在有序实数组,使得,称,为向量在,上的分量37、空间向量基本定理:若三个向量,不共面,则对空间任历来量,存在实数组,使得38、若三个向量,不共面,则所有空间向量组成的集合是这个集合可看作是由向量,生成的,称为空间的一个基底,称为基向量空间任意三个不共面的向量都可以构成空间的一个基底39、设,为有公共起点的三个两两垂直的单位向量(称它们为单位正交基底),以,的公共起点为原点,分别以,的方向为轴,轴,轴的正方向建立空间直角坐标系则对于空间任意一个向量,一定可以把它平移,使它的起点与原点重合,得到向量存在有序实数组,使得把,称作向量在单位正交基底,下的坐标,记作此时,向量的坐标是点在空间直角坐标系中的坐标40、设,则 若、为非零向量,则若,则,则41、在空间中,取一定点作为基点,那么空间中任意一点的位置可以用向量来表达向量称为点的位置向量42、空间中任意一条直线的位置可以由上一个定点以及一个定方向拟定点是直线上一点,向量表达直线的方向向量,则对于直线上的任意一点,有,这样点和向量不仅可以拟定直线的位置,还可以具体表达出直线上的任意一点43、空间中平面的位置可以由内的两条相交直线来拟定设这两条相交直线相交于点,它们的方向向量分别为,为平面上任意一点,存在有序实数对,使得,这样点与向量,就拟定了平面的位置44、直线垂直,取直线的方向向量,则向量称为平面的法向量45、若空间不重合两条直线,的方向向量分别为,则,46、若直线的方向向量为,平面的法向量为,且,则,47、若空间不重合的两个平面,的法向量分别为,则,48、设异面直线,的夹角为,方向向量为,其夹角为,则有49、设直线的方向向量为,平面的法向量为,与所成的角为,与的夹角为,则有50、设,是二面角的两个面,的法向量,则向量,的夹角(或其补角)就是二面角的平面角的大小若二面角的平面角为,则51、点与点之间的距离可以转化为两点相应向量的模计算52、在直线上找一点,过定点且垂直于直线的向量为,则定点到直线的距离为53、点是平面外一点,是平面内的一定点,为平面的一个法向量,则点到平面的距离为数学选修2-2知识点总结一、导数1函数的平均变化率为注1:其中是自变量的改变量,可正,可负,可零。注2:函数的平均变化率可以看作是物体运动的平均速度。2、导函数的概念:函数在处的瞬时变化率是,则称函数在点处可导,并把这个极限叫做在处的导数,记作或,即=.3.函数的平均变化率的几何意义是割线的斜率;函数的导数的几何意义是切线的斜率。4导数的背景(1)切线的斜率;(2)瞬时速度;(3)边际成本。5、常见的函数导数和积分公式函数导函数不定积分06、常见的导数和定积分运算公式:若,均可导(可积),则有:和差的导数运算积的导数运算特别地:商的导数运算特别地:复合函数的导数微积分基本定理 (其中)和差的积分运算特别地:积分的区间可加性6.用导数求函数单调区间的环节:求函数f(x)的导数令>0,解不等式,得x的范围就是递增区间.令<0,解不等式,得x的范围,就是递减区间;注:求单调区间之前一定要先看原函数的定义域。7.求可导函数f(x)的极值的环节:(1)拟定函数的定义域。(2) 求函数f(x)的导数 (3)求方程=0的根(4) 用函数的导数为0的点,顺次将函数的定义区间提成若干小开区间,并列成表格,检查在方程根左右的值的符号,假如左正右负,那么f(x)在这个根处取得极大值;假如左负右正,那么f(x)在这个根处取得极小值;假如左右不改变符号,那么f(x)在这个根处无极值8.运用导数求函数的最值的环节:求在上的最大值与最小值的环节如下: 求在上的极值;将的各极值与比较,其中最大的一个是最大值,最小的一个是最小值。注:实际问题的开区间唯一极值点就是所求的最值点;9求曲边梯形的思想和环节:分割近似代替求和取极限 (“以直代曲”的思想)10.定积分的性质根据定积分的定义,不难得出定积分的如下性质:性质1 性质5 若,则推广: 推广:11定积分的取值情况:定积分的值也许取正值,也也许取负值,还也许是0.( l )当相应的曲边梯形位于 x 轴上方时,定积分的值取正值,且等于x轴上方的图形面积;(2)当相应的曲边梯形位于 x 轴下方时,定积分的值取负值,且等于x轴上方图形面积的相反数;(3) 当位于 x 轴上方的曲边梯形面积等于位于 x 轴下方的曲边梯形面积时,定积分的值为0,且等于x轴上方图形的面积减去下方的图形的面积 12物理中常用的微积分知识(1)位移的导数为速度,速度的导数为加速度。(2)力的积分为功。推理与证明知识点13.归纳推理的定义:从个别事实中推表演一般性的结论,像这样的推理通常称为归纳推理。归纳推理是由部分到整体,由个别到一般的推理。14. 归纳推理的思维过程大体如图: 实验、观测概括、推广猜测一般性结论15.归纳推理的特点: 归纳推理的前提是几个已知的特殊现象,归纳所得的结论是尚属未知的一般现象。由归纳推理得到的结论具有猜测的性质,结论是否真实,还需通过逻辑证明和实验检查,因此,它不能作为数学证明的工具。归纳推理是一种具有发明性的推理,通过归纳推理的猜想,可以作为进一步研究的起点,帮助人们发现问题和提出问题。16.类比推理的定义:根据两个(或两类)对象之间在某些方面的相似或相同,推表演它们在其他方面也相似或相同,这样的推理称为类比推理。类比推理是由特殊到特殊的推理。17.类比推理的思维过程 观测、比较联想、类推推测新的结论18.演绎推理的定义:演绎推理是根据已有的事实和对的的结论(涉及定义、公理、定理等)按照严格的逻辑法则得到新结论的推理过程。演绎推理是由一般到特殊的推理。19演绎推理的重要形式:三段论20.“三段论”可以表达为:大前题:M是P小前提:S是M结论:S是P。 其中是大前提,它提供了一个一般性的原理;是小前提,它指出了一个特殊对象;是结论,它是根据一般性原理,对特殊情况做出的判断。21.直接证明是从命题的条件或结论出发,根据已知的定义、公理、定理,直接推证结论的真实性。直接证明涉及综合法和分析法。22.综合法就是“由因导果”,从已知条件出发,不断用必要条件代替前面的条件,直至推出要证的结论。23.分析法就是从所要证明的结论出发,不断地用充足条件替换前面的条件或者一定成立的式子,可称为“由果索因”。要注意叙述的形式:要证A,只要证B,B应是A成立的充足条件. 分析法和综合法常结合使用,不要将它们割裂开。24反证法:是指从否认的结论出发,通过逻辑推理,导出矛盾,证实结论的否认是错误的,从而肯定原结论是对的的证明方法。25.反证法的一般环节(1)假设命题结论不成立,即假设结论的反面成立; (2)从假设出发,通过推理论证,得出矛盾;(3)从矛盾鉴定假设不对的,即所求证命题对的。 26常见的“结论词”与“反义词”原结论词反义词原结论词反义词至少有一个一个也没有对所有的x都成立存在x使不成立至多有一个至少有两个对任意x不成立存在x使成立至少有n个至多有n-1个p或q且至多有n个至少有n+1个p且q或27.反证法的思维方法:正难则反28.归缪矛盾(1)与已知条件矛盾:(2)与已有公理、定理、定义矛盾; (3)自相矛盾29数学归纳法(只能证明与正整数有关的数学命题)的环节(1)证明:当n取第一个值时命题成立;(2)假设当n=k (kN*,且kn0)时命题成立,证明当n=k+1时命题也成立.由(1),(2)可知,命题对于从n0开始的所有正整数n都对的注:常用于证明不完全归纳法推测所得命题的对的性的证明。数系的扩充和复数的概念知识点30.复数的概念:形如a+bi的数叫做复数,其中i叫虚数单位,叫实部, 叫虚部,数集叫做复数集。规定:a=c且b=d,强调:两复数不能比较大小,只有相等或不相等。31数集的关系:32.复数的几何意义:复数与平面内的点或有序实数对一一相应。33.复平面:根据复数相等的定义,任何一个复数,都可以由一个有序实数对唯一拟定。由于有序实数对与平面直角坐标系中的点一一相应,因此复数集与平面直角坐标系中的点集之间可以建立一一相应。这个建立了直角坐标系来表达复数的平面叫做复平面,轴叫做实轴,轴叫做虚轴。实轴上的点都表达实数,除了原点外,虚轴上的点都表达纯虚数。34.求复数的模(绝对值)与复数相应的向量的模叫做复数的模(也叫绝对值)记作。由模的定义可知:35.复数的加、减法运算及几何意义复数的加、减法法则:,则。注:复数的加、减法运算也可以按向量的加、减法来进行。复数的乘法法则:。复数的除法法则:其中叫做实数化因子36.共轭复数:两复数互为共轭复数,当时,它们叫做共轭虚数。常见的运算规律设是1的立方虚根,则,高中数学选修2-3知识点总结第一章 计数原理知识点:1、 分类加法计数原理:做一件事情,完毕它有N类办法,在第一类办法中有M1种不同的方法,在第二类办法中有M2种不同的方法,在第N类办法中有MN种不同的方法,那么完毕这件事情共有M1+M2+MN种不同的方法。 2、分步乘法计数原理:做一件事,完毕它需要提成N个环节,做第一 步有m1种不同的方法,做第二步有M2不同的方法,做第N步有MN不同的方法.那么完毕这件事共有 N=M1M2.MN 种不同的方法。3、排列:从n个不同的元素中任取m(mn)个元素,按照一定顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列4、排列数: 5、组合:从n个不同的元素中任取m(mn)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合。6、组合数: 7、二项式定理:8、二项式通项公式第二章 随机变量及其分布知识点:1、 随机变量:假如随机实验也许出现的结果可以用一个变量X来表达,并且X是随着实验的结果的不同而变化,那么这样的变量叫做随机变量 随机变量常用大写字母X、Y等或希腊字母 、等表达。2、 离散型随机变量:在上面的射击、产品检查等例子中,对于随机变量X也许取的值,我们可以按一定顺序一一列出,这样的随机变量叫做离散型随机变量3、离散型随机变量的分布列:一般的,设离散型随机变量X也许取的值为x1,x2,. ,xi ,.,xn X取每一个值 xi(i=1,2,.)的概率P(=xi)Pi,则称表为离散型随机变量X 的概率分布,简称分布列4、分布列性质 pi0, i =1,2, ; p1 + p2 +pn= 15、二点分布:假如随机变量X的分布列为:其中0<p<1,q=1-p,则称离散型随机变量X服从参数p的二点分布6、超几何分布:一般地, 设总数为N件的两类物品,其中一类有M件,从所有物品中任取n(nN)件,这n件中所含这类物品件数X是一个离散型随机变量,则它取值为k时的概率为,其中,且1 条件概率:对任意事件A和事件B,在已知事件A发生的条件下事件B发生的概率,叫做条件概率.记作P(B|A),读作A发生的条件下B的概率2 公式: 3 互相独立事件:事件A(或B)是否发生对事件B(或A)发生的概率没有影响,这样的两个事件叫做互相独立事件。4 n次独立反复事件:在同等条件下进行的,各次之间互相独立的一种实验11、二项分布: 设在n次独立反复实验中某个事件A发生的次数,A发生次数是一个随机变量假如在一次实验中某事件发生的概率是p,事件A不发生的概率为q=1-p,那么在n次独立反复实验中 (其中 k=0,1, ,n,q=1-p )于是可得随机变量的概率分布如下:这样的随机变量服从二项分布,记作B(n,p) ,其中n,p为参数12、数学盼望:一般地,若离散型随机变量的概率分布为则称 Ex1p1x2p2xnpn 为的数学盼望或平均数、均值,数学盼望又简称为盼望是离散型随机变量。13、方差:D()=(x1-E)2·P1+(x2-E)2·P2 +.+(xn-E)2·Pn 叫随机变量的均方差,简称方差。14、集中分布的盼望与方差一览:盼望方差两点分布E=pD=pq,q=1-p二项分布, B(n,p)E=np D=qE=npq,(q=1-p)15、正态分布:若概率密度曲线就是或近似地是函数 的图像,其中解析式中的实数是参数,分别表达总体的平均数与标准差则其分布叫正态分布,f( x )的图象称为正态曲线。 16、基本性质:曲线在x轴的上方,与x轴不相交曲线关于直线x=对称,且在x=时位于最高点.当时,曲线上升;当时,曲线下降并且当曲线向左、右两边无限延伸时,以x轴为渐近线,向它无限靠近 当一定期,曲线的形状由拟定越大,曲线越“矮胖”,表达总体的分布越分散;越小,曲线越“瘦高”,表达总体的分布越集中当相同时,正态分布曲线的位置由盼望值来决定.正态曲线下的总面积等于1.17、 3原则:从上表看到,正态总体在 以外取值的概率 只有4.6%,在 以外取值的概率只有0.3% 由于这些概率很小,通常称这些情况发生为小概率事件.也就是说,通常认为这些情况在一次实验中几乎是不也许发生的.第三章 记录案例知识点:1、 独立性检查假设有两个分类变量X和Y,它们的值域分另为x1, x2和y1, y2,其样本频数列联表为: y1y2总计x1aba+bx2cdc+d总计a+cb+da+b+c+d若要推断的论述为H1:“X与Y有关系”,可以运用独立性检查来考察两个变量是否有关系,并且能较精确地给出这种判断的可靠限度。具体的做法是,由表中的数据算出随机变量K2的值(即K的平方) K2 = n (ad - bc) 2 / (a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d为样本容量,K2的值越大,说明“X与Y有关系”成立的也许性越大。 K23.841时,X与Y无关; K2>3.841时,X与Y有95%也许性有关;K2>6.635时X与Y有99%也许性有关2、 回归分析 1、回归直线方程   其中, 2、r检查性质:(1)r 1,r 并且越接近于1,线性相关限度越强,r 越接近于0,线性相关限度越弱;(2)r >r0.05,表白有95%的把握认为x与Y之间具有线性相关关系;r r0.05,我们没有理由拒绝本来的假设,这是寻找回归直线方程毫无意义!高中数学 选修4-5知识点1、不等式的基本性质(对称性)(传递性)(可加性)(同向可加性)(异向可减性)(可积性)(同向正数可乘性)(异向正数可除性)(平方法则)(开方法则)(倒数法则)2、几个重要不等式,(当且仅当时取号). 变形公式:(基本不等式) ,(当且仅当时取到等号).变形公式: 用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、三相等”.(三个正数的算术几何平均不等式)(当且仅当时取到等号).(当且仅当时取到等号).(当且仅当时取到等号).(当仅当a=b时取等号)(当仅当a=b时取等号),(其中规律:小于1同加则变大,大于1同加则变小.绝对值三角不等式3、几个著名不等式平均不等式:,当且仅当时取号).(即调和平均几何平均算术平均平方平均). 变形公式: 幂平均不等式:二维形式的三角不等式:二维形式的柯西不等式: 当且仅当时,等号成立.三维形式的柯西不等式:一般形式的柯西不等式:向量形式的柯西不等式:设是两个向量,则当且仅当是零向量,或存在实数,使时,等号成立.排序不等式(排序原理):设为两组实数.是的任一排列,则(反序和乱序和顺序和),当且仅当或时,反序和等于顺序和.琴生不等式:(特例:凸函数、凹函数)若定义在某区间上的函数,对于定义域中任意两点有则称f(x)为凸(或凹)函数.4、不等式证明的几种常用方法 常用方法有:比较法(作差,作商法)、综合法、分析法;其它方法有:换元法、反证法、放缩法、构造法,函数单调性法,数学归纳法等.常见不等式的放缩方法:舍去或加上一些项,如将分子或分母放大(缩小),如 等.5、一元二次不等式的解法求一元二次不等式解集的环节:一化:化二次项前的系数为正数.二判:判断相应方程的根.三求:求相应方程的根.四画:画出相应函数的图象.五解集:根据图象写出不等式的解集.规律:当二次项系数为正时,小于取中间,大于取两边.6、高次不等式的解法:穿根法.分解因式,把根标在数轴上,从右上方依次往下穿(奇穿偶切),结合原式不等号的方向,写出不等式的解集.7、分式不等式的解法:先移项通分标准化,则 (时同理)规律:把分式不等式等价转化为整式不等式求解.8、无理不等式的解法:转化为有理不等式求解规律:把无理不等式等价转化为有理不等式,诀窍在于从“小”的一边分析求解.9、指数不等式的解法:当时,当时, 规律:根据指数函数的性质转化.10、对数不等式的解法当时, 当时, 规律:根据对数函数的性质转化.11、含绝对值不等式的解法:定义法:平方法:同解变形法,其同解定理有:规律:关键是去掉绝对值的符号.12、具有两个(或两个以上)绝对值的不等式的解法:规律:找零点、划区间、分段讨论去绝对值、每段中取交集,最后取各段的并集.13、含参数的不等式的解法解形如且含参数的不等式时,要对参数进行分类讨论,分类讨论的标准有:讨论与0的大小;讨论与0的大小;讨论两根的大小.14、恒成立问题不等式的解集是全体实数(或恒成立)的条件是:当时 当时不等式的解集是全体实数(或恒成立)的条件是:当时当时恒成立恒成立恒成立恒成立15、线性规划问题二元一次不等式所表达的平面区域的判断: 法一:取点定域法:由于直线的同一侧的所有点的坐标代入后所得的实数的符号相同.所以,在实际判断时,往往只需在直线某一侧任取一特殊点(如原点),由的正负即可判断出或表达直线哪一侧的平面区域.即:直线定边界,分清虚实;选点定区域,常选原点.法二:根据或,观测的符号与不等式开口的符号,若同号,或表达直线上方的区域;若异号,则表达直线上方的区域.即:同号上方,异号下方.二元一次不等式组所表达的平面区域: 不等式组表达的平面区域是各个不等式所表达的平面区域的公共部分.运用线性规划求目的函数为常数)的最值: 法一:角点法:假如目的函数 (即为公共区域中点的横坐标和纵坐标)的最值存在,则这些最值都在该公共区域的边界角点处取得,将这些角点的坐标代入目的函数,得到一组相应值,最大的那个数为目的函数的最大值,最小的那个数为目的函数的最小值法二:画移定求:第一步,在平面直角坐标系中画出可行域;第二步,作直线 ,平移直线(据可行域,将直线平行移动)拟定最优解;第三步,求出最优解;第四步,将最优解代入目的函数即可求出最大值或最小值 .第二步中最优解的拟定方法:运用的几何意义:,为直线的纵截距.若则使目的函数所表达直线的纵截距最大的角点处,取得最大值,使直线的纵截距最小的角点处,取得最小值;若则使目的函数所表达直线的纵截距最大的角点处,取得最小值,使直线的纵截距最小的角点处,取得最大值.常见的目的函数的类型:“截距”型:“斜率”型:或“距离”型:或或在求该“三型”的目的函数的最值时,可结合线性规划与代数式的几何意义求解,从而使问题简朴化.极坐标与参数方程基本知识点一、极坐标知识点1伸缩变换:设点是平面直角坐标系中的任意一点,在变换的作用下,点相应到点,称为平面直角坐标系中的坐标伸缩变换,简称伸缩变换。2.极坐标系的概念:在平面内取一个定点O,从O引一条射线Ox,选定一个单位长度以及计算角度的正 方向(通常取逆时针方向为正方向),这样就建立了一个极坐标系,O点叫做极点,射线Ox叫做极轴.极点;极轴;长度单位;角度单位和它的正方向,构成了极坐标系的四要素,缺一不可.3点的极坐标:设是平面内一点,极点与点的距离叫做点的极径,记为;以极轴为始边,射线为终边的叫做点的极角,记为。有序数对叫做点的极坐标,记为. 极坐标与表达同一个点。极点的坐标为.4.若,则,规定点与点关于极点对称,即与表达同一点。假如规定,那么除极点外,平面内的点可用唯一的极坐标表达;同时,极坐标表达的点也是唯一拟定的。5 极坐标与直角坐标的互化:(1)互化的前提条件极坐标系中的极点与直角坐标系中的原点重合;极轴与x轴的正半轴重合两种坐标系中取相同的长度单位.(2)互化公式6.曲线的极坐标方程:1直线的极坐标方程:若直线过点,且极轴到此直线的角为,则它的方程为: 几个特殊位置的直线的极坐标方程(1)直线过极点 (2)直线过点且垂直于极轴 (3)直线过且平行于极轴方程:(1) 或写成及 (2) (3)sin=b2圆的极坐标方程: 若圆心为,半径为r的圆方程为:几个特殊位置的圆的极坐标方程(1)当圆心位于极点,r为半径 (2)当圆心位于(a>0),a为半径 (3)当圆心位于,a为半径方程:(1) (2) (3)7.在极坐标系中,表达以极点为起点的一条射线;表达过极点的一条直线.二、参数方程知识点1.参数方程的概念:在平面直角坐标系中,若曲线C上的点满足,该方程叫曲线C的参数方程,变量t是参变数,简称参数。(在平面直角坐标系中,假如曲线上任意一点的坐标都是某个变数的函数 并且对于的每一个允许值,由这个方程所拟定的点都在这条曲线上,那么这个方程就叫做这条曲线的参数方程,联系变数的变数叫做参变数,简称参数。)相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程。2 曲线的参数方程(1)圆的参数方程可表达为.(2)椭圆的参数方程可表达为.(3)抛物线的参数方程可表达为.(4)通过点,倾斜角为的直线的参数方程可表达为(为参数).3在建立曲线的参数方程时,要注明参数及参数的取值范围。在参数方程与普通方程的互化中,必须使的取值范围保持一致.规律方法指导:1、把参数方程化为普通方程,需要根据其结构特性,选取适当的消参方法. 常见的消参方法有:代入消法 ;加减消参;平方和(差)消参法;乘法消参法;比值消参法;运用恒等式消参法;混合消参法等.2、把曲线的普通方程化为参数方程的关键:一是适当选取参数;二是保证互化前后方程的等价性, 注意方程中的参数的变化范围。

    注意事项

    本文(2023年人教版高中数学选修部分知识点总结理科.doc)为本站会员(可****阿)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开