高中数学典型例题解析平面解析几何初步.doc
流云教育 高中复习高中数学典型例题分析第七章 平面解析几何初步§7.1直线和圆的方程一、知识导学1两点间的距离公式:不论A(1,1),B(2,2)在坐标平面上什么位置,都有d=|AB|=,特别地,与坐标轴平行的线段的长|AB|=|21|或|AB|=|2-1|.2定比分点公式:定比分点公式是解决共线三点A(1,1),B(2,2),P(,)之间数量关系的一个公式,其中的值是起点到分点与分点到终点的有向线段的数量之比.这里起点、分点、终点的位置是可以任意选择的,一旦选定后的值也就随之确定了.若以A为起点,B为终点,P为分点,则定比分点公式是.当P点为AB的中点时,=1,此时中点坐标公式是.3直线的倾斜角和斜率的关系(1)每一条直线都有倾斜角,但不一定有斜率.(2)斜率存在的直线,其斜率与倾斜角之间的关系是=.4确定直线方程需要有两个互相独立的条件。直线方程的形式很多,但必须注意各种形式的直线方程的适用范围.名称方程说明适用条件斜截式为直线的斜率b为直线的纵截距倾斜角为90°的直线不能用此式点斜式() 为直线上的已知点,为直线的斜率倾斜角为90°的直线不能用此式两点式=(),()是直线上两个已知点与两坐标轴平行的直线不能用此式截距式+=1为直线的横截距b为直线的纵截距过(0,0)及与两坐标轴平行的直线不能用此式一般式,分别为斜率、横截距和纵截距A、B不全为零5两条直线的夹角。当两直线的斜率,都存在且· -1时,=,当直线的斜率不存在时,可结合图形判断.另外还应注意到:“到角”公式与“夹角”公式的区别.6怎么判断两直线是否平行或垂直?判断两直线是否平行或垂直时,若两直线的斜率都存在,可以用斜率的关系来判断;若直线的斜率不存在,则必须用一般式的平行垂直条件来判断.(1)斜率存在且不重合的两条直线1, 2,有以下结论:12=,且1212·= -1(2)对于直线1,2 ,当1,2,1,2都不为零时,有以下结论:12=1212+12 = 01与2相交1与2重合=7点到直线的距离公式.(1)已知一点P()及一条直线:,则点P到直线的距离d=;(2)两平行直线1: , 2: 之间的距离d=.8确定圆方程需要有三个互相独立的条件。圆的方程有两种形式,要知道两种形式之间的相互转化及相互联系(1)圆的标准方程:,其中(,b)是圆心坐标,是圆的半径;(2)圆的一般方程:(0),圆心坐标为(-,-),半径为=.二、疑难知识导析1直线与圆的位置关系的判定方法.(1)方法一直线:;圆:.一元二次方程(2)方法二直线: ;圆:,圆心(,b)到直线的距离为d=2两圆的位置关系的判定方法.设两圆圆心分别为O1、O2,半径分别为1,2,|O1O2|为圆心距,则两圆位置关系如下:|O1O2|>1+2两圆外离;|O1O2|=1+2两圆外切;| 1-2|<|O1O2|<1+2两圆相交;| O1O2 |=|1-2|两圆内切;0<| O1O2|<| 1-2|两圆内含.三、经典例题导讲例1直线l经过P(2,3),且在x,y轴上的截距相等,试求该直线方程.错解:设直线方程为:,又过P(2,3),求得a=5 直线方程为x+y-5=0.错因:直线方程的截距式: 的条件是:0且b0,本题忽略了这一情形.正解:在原解的基础上,再补充这样的过程:当直线过(0,0)时,此时斜率为:,直线方程为y=x综上可得:所求直线方程为x+y-5=0或y=x .例2已知动点P到y轴的距离的3倍等于它到点A(1,3)的距离的平方,求动点P的轨迹方程.错解:设动点P坐标为(x,y).由已知3 化简3=x2-2x+1+y2-6y+9 . 当x0时得x2-5x+y2-6y+10=0 . 当x0时得x2+ x+y2-6y+10=0 . 错因:上述过程清楚点到y轴距离的意义及两点间距离公式,并且正确应用绝对值定义将方程分类化简,但进一步研究化简后的两个方程,配方后得(x-)2+(y-3)2 = 和 (x+)2+(y-3)2 = - 两个平方数之和不可能为负数,故方程的情况不会出现.正解:接前面的过程,方程化为(x-)2+(y-3)2 = ,方程化为(x+)2+(y-3)2 = - ,由于两个平方数之和不可能为负数,故所求动点P的轨迹方程为: (x-)2+(y-3)2 = (x0)例3m是什么数时,关于x,y的方程(2m2+m-1)x2+(m2-m+2)y2+m+2=0的图象表示一个圆?错解:欲使方程Ax2+Cy2+F=0表示一个圆,只要A=C0, 得2m2+m-1=m2-m+2,即m2+2m-3=0,解得m1=1,m2=-3, 当m=1或m=-3时,x2和y2项的系数相等,这时,原方程的图象表示一个圆错因:A=C,是Ax2+Cy2+F=0表示圆的必要条件,而非充要条件,其充要条件是:A=C0且0.正解:欲使方程Ax2+Cy2+F=0表示一个圆,只要A=C0, 得2m2+m-1=m2-m+2,即m2+2m-3=0,解得m1=1,m2=-3,(1) 当m=1时,方程为2x2+2y2=-3不合题意,舍去.(2) 当m=-3时,方程为14x2+14y2=1,即x2+y2=,原方程的图形表示圆.例4自点A(-3,3)发出的光线L射到x轴上,被x轴反射,其反射光线所在直线与圆x2+y2-4x-4y+70相切,求光线L所在的直线方程.错解:设反射光线为L,由于L和L关于x轴对称,L过点A(-3,3),点A关于x轴的对称点A(-3,-3),于是L过A(-3,-3).设L的斜率为k,则L的方程为y-(-3)kx-(-3),即kx-y+3k-30,已知圆方程即(x-2)2+(y-2)21,圆心O的坐标为(2,2),半径r1因L和已知圆相切,则O到L的距离等于半径r1即整理得12k2-25k+120解得kL的方程为y+3(x+3)即4x-3y+30因L和L关于x轴对称故L的方程为4x+3y+30.错因:漏解正解:设反射光线为L,由于L和L关于x轴对称,L过点A(-3,3),点A关于x轴的对称点A(-3,-3),于是L过A(-3,-3).设L的斜率为k,则L的方程为y-(-3)kx-(-3),即kx-y+3k-30,已知圆方程即(x-2)2+(y-2)21,圆心O的坐标为(2,2),半径r1因L和已知圆相切,则O到L的距离等于半径r1即整理得12k2-25k+120解得k或kL的方程为y+3(x+3);或y+3(x+3)。即4x-3y+30或3x-4y-30因L和L关于x轴对称故L的方程为4x+3y+30或3x+4y-30.例5求过直线和圆的交点,且满足下列条件之一的圆的方程:(1) 过原点;(2)有最小面积.解:设所求圆的方程是: 即:(1)因为圆过原点,所以,即故所求圆的方程为:.(2) 将圆系方程化为标准式,有:当其半径最小时,圆的面积最小,此时为所求.故满足条件的圆的方程是.点评:(1)直线和圆相交问题,这里应用了曲线系方程,这种解法比较方便;当然也可以待定系数法。(2)面积最小时即圆半径最小。也可用几何意义,即直线与相交弦为直径时圆面积最小.例6(06年辽宁理科)已知点A(),B()(0)是抛物线上的两个动点,O是坐标原点,向量满足.设圆C的方程为(1)证明线段AB是圆C的直径;(2)当圆C的圆心到直线的距离的最小值为时,求的值.解:(1)证明,()2()2,整理得:00设M()是以线段AB为直径的圆上的任意一点,则0即0整理得:故线段AB是圆C的直径.(2)设圆C的圆心为C(),则,又0,0,04所以圆心的轨迹方程为设圆心C到直线的距离为,则当时,有最小值,由题设得2.四、典型习题导练1直线截圆得的劣弧所对的圆心角为 ( )A. B. C. D.2.已知直线x=a(a0)和圆(x-1)2+y2=4相切 ,那么a的值是( )A.5 B.4 C.3 D.23. 如果实数x、y满足等式(x-2)2+y2,则的最大值为: .4.设正方形ABCD(A、B、C、D顺时针排列)的外接圆方程为x2+y2-6x+a=0(a<9),C、D点所在直线l的斜率为.(1)求外接圆圆心M点的坐标及正方形对角线AC、BD的斜率;(2)如果在x轴上方的A、B两点在一条以原点为顶点,以x轴为对称轴的抛物线上,求此抛物线的方程及直线l的方程;(3)如果ABCD的外接圆半径为2,在x轴上方的A、B两点在一条以x轴为对称轴的抛物线上,求此抛物线的方程及直线l的方程.解 (1)由(x-3)2+y2=9-a(a<9)可知圆心M的坐标为(3,0),依题意:ABM=BAM=,kAB=。MA,MB的斜率k满足:|=1,解得:kAC= -,kBD=2。(2)设MB、MA的倾斜角分别为1、2,则tan1=2,tan2= -,可以推出:cos1=, sin1=,cos2= -,sin2=。再设|MA|=|MB|=r,则A(3-r,r),B(3+r, r)。设抛物线方程为y2=2px(p>0),由于A,B两点在抛物线上, 解出:r=,p=。得抛物线方程为y2=x。由此可知A点坐标为(1,1),且A点关于M(3,0)的对称点C的坐标是(5,-1),直线l的方程为y -(-1)=(x-5),即x-3y-8=0。(3)将圆方程(x-3)2+y2=(2)2分别与AC、BD的直线方程:y= -(x-3),y=2(x-3)联立,可解得A(-1,2),B(5,4)。设抛物线方程为y2=a(x-m) (*)将A(-1,2)、B(5,4)的坐标代入(*),得解得:a=2,m= -3,抛物线的方程为y2=2(x+3)。A(-1,2)点关于M(3,0)的对称点为C(7,-2),故直线l的方程为y-(-2)=(x-7),即x-3y-13=0。5.如图,已知圆C:(x+4)2+y2=4。圆D的圆心D在y轴上且与圆C外切。圆 D与y轴交于A、B两点,点P为(-3,0).(1)若点D坐标为(0,3),求APB的正切值;(2)当点D在y轴上运动时,求APB的正切值的最大值;(3)在x轴上是否存在定点Q,当圆D在y轴上运动时,AQB是定值?如果存在,求出点Q坐标;如果不存在,说明理由.考点:直线和圆的方程的应用专题:计算题;证明题分析:(1)由已知中圆C:(x+4)2+y2=4,点D(0,3),我们易求出CD的长,进而求出圆D的半径,求出A,B两点坐标后,可由tanAPB=kBP得到结果(2)设D点坐标为(0,a),圆D半径为r,我们可以求出对应的圆D的方程和A,B两点的坐标,进而求出APB正切的表达式(含参数r),求出其最值后,即可根据正切函数的单调性,求出APB的最大值;(3)假设存在点Q(b,0),根据AQB是定值,我们构造关于b的方程,若方程有解,则存在这样的点,若方程无实根,则不存在这样的点解答:解:(1)|CD|=5,圆D的半径r=5-2=3,此时A、B坐标分别为A(0,0)、B(0,6)tanAPB=kBP=2(3分)(2)设D点坐标为(0,a),圆D半径为r,则(r+2)2=16+a2,A、B的坐标分别为(0,a-r),(0,a+r) 的最大值为 (8分)(3)假设存在点Q(b,0),由 依题意的大小与无关,当且仅当,此时有,即(定值)故存在或,使点评:本题考查的知识点是直线和圆的方程的应用,其中根据已知中圆C:(x+4)2+y2=4,圆D的圆心D在y 轴上且与圆C外切,圆D与y 轴交于A、B两点,确定圆D的方程,进而求出A,B的方程是解答本题的关键§7.2圆锥曲线一、知识导学1椭圆定义:在平面内,到两定点距离之和等于定长(定长大于两定点间的距离)的动点的轨迹2椭圆的标准方程:, ()3椭圆的第二定义:一动点到定点的距离和它到一条定直线的距离的比是一个内常数,那么这个点的轨迹叫做椭圆 其中定点叫做焦点,定直线叫做准线,常数就是离心率椭圆的第二定义与第一定义是等价的,它是椭圆两种不同的定义方式4椭圆的准线方程对于,左准线;右准线对于,下准线;上准线5.焦点到准线的距离(焦参数)椭圆的准线方程有两条,这两条准线在椭圆外部,与短轴平行,且关于短轴对称 6椭圆的参数方程7双曲线的定义:平面内到两定点的距离的差的绝对值为常数(小于)的动点的轨迹叫双曲线 即 这两个定点叫做双曲线的焦点,两焦点间的距离叫做焦距8双曲线的标准方程及特点: (1)双曲线的标准方程有焦点在x轴上和焦点y轴上两种: 焦点在轴上时双曲线的标准方程为:(,); 焦点在轴上时双曲线的标准方程为:(,)(2)有关系式成立,且其中与b的大小关系:可以为9焦点的位置:从椭圆的标准方程不难看出椭圆的焦点位置可由方程中含字母、项的分母的大小来确定,分母大的项对应的字母所在的轴就是焦点所在的轴 而双曲线是根据项的正负来判断焦点所在的位置,即项的系数是正的,那么焦点在轴上;项的系数是正的,那么焦点在轴上10双曲线的几何性质:(1)范围、对称性 由标准方程,从横的方向来看,直线x=-,x=之间没有图象,从纵的方向来看,随着x的增大,y的绝对值也无限增大,所以曲线在纵方向上可无限伸展,不像椭圆那样是封闭曲线 双曲线不封闭,但仍称其对称中心为双曲线的中心 (2)顶点顶点:,特殊点:实轴:长为2, 叫做半实轴长 虚轴:长为2b,b叫做虚半轴长双曲线只有两个顶点,而椭圆则有四个顶点,这是两者的又一差异(3)渐近线过双曲线的渐近线() (4)离心率双曲线的焦距与实轴长的比,叫做双曲线的离心率 范围:双曲线形状与e的关系:,e越大,即渐近线的斜率的绝对值就大,这时双曲线的形状就从扁狭逐渐变得开阔 由此可知,双曲线的离心率越大,它的开口就越阔 11 双曲线的第二定义:到定点F的距离与到定直线的距离之比为常数的点的轨迹是双曲线 其中,定点叫做双曲线的焦点,定直线叫做双曲线的准线 常数e是双曲线的离心率12双曲线的准线方程:对于来说,相对于左焦点对应着左准线,相对于右焦点对应着右准线;焦点到准线的距离(也叫焦参数) 对于来说,相对于上焦点对应着上准线;相对于下焦点对应着下准线抛物线图形方程焦点准线13 抛物线定义:平面内与一个定点F和一条定直线的距离相等的点的轨迹叫做抛物线 定点F叫做抛物线的焦点,定直线叫做抛物线的准线 二、疑难知识导析椭圆、双曲线、抛物线同属于圆锥曲线,它们的定义、标准方程及其推导过程以及简单的几何性质都存在着相似之处,也有着一定的区别,因此,要准确地理解和掌握三种曲线的特点以及它们之间的区别与联系1等轴双曲线定义:实轴和虚轴等长的双曲线叫做等轴双曲线,这样的双曲线叫做等轴双曲线 等轴双曲线的性质:(1)渐近线方程为:;(2)渐近线互相垂直;(3)离心率 2共渐近线的双曲线系如果已知一双曲线的渐近线方程为,那么此双曲线方程就一定是:或写成 3共轭双曲线以已知双曲线的实轴为虚轴,虚轴为实轴,这样得到的双曲线称为原双曲线的共轭双曲线 双曲线和它的共轭双曲线的焦点在同一圆上 确定双曲线的共轭双曲线的方法:将1变为-14抛物线的几何性质(1)范围因为p0,由方程可知,这条抛物线上的点M的坐标(x,y)满足不等式x0,所以这条抛物线在y轴的右侧;当x的值增大时,|y|也增大,这说明抛物线向右上方和右下方无限延伸(2)对称性以y代y,方程不变,所以这条抛物线关于x轴对称,我们把抛物线的对称轴叫做抛物线的轴(3)顶点抛物线和它的轴的交点叫做抛物线的顶点在方程中,当y=0时,x=0,因此抛物线的顶点就是坐标原点(4)离心率抛物线上的点M与焦点的距离和它到准线的距离的比,叫做抛物线的离心率,用e表示由抛物线的定义可知,e=119抛物线的焦半径公式:抛物线,抛物线, 抛物线, 抛物线,三、经典例题导讲例1设双曲线的渐近线为:,求其离心率.错解:由双曲线的渐近线为:,可得:,从而剖析:由双曲线的渐近线为是不能确定焦点的位置在x轴上的,当焦点的位置在y轴上时,故本题应有两解,即:或.例2设点P(x,y)在椭圆上,求的最大、最小值.错解:因 ,得:,同理得:,故 最大、最小值分别为3,-3.剖析:本题中x、y除了分别满足以上条件外,还受制约条件的约束.当x=1时,y此时取不到最大值2,故x+y的最大值不为3.其实本题只需令,则,故其最大值为,最小值为.例3已知双曲线的右准线为,右焦点,离心率,求双曲线方程.错解一: 故所求的双曲线方程为错解二: 由焦点知故所求的双曲线方程为错因:这两个解法都是误认为双曲线的中心在原点,而题中并没有告诉中心在原点这个条件。由于判断错误,而造成解法错误。随意增加、遗漏题设条件,都会产生错误解法.解法一: 设为双曲线上任意一点,因为双曲线的右准线为,右焦点,离心率,由双曲线的定义知 整理得 解法二: 依题意,设双曲线的中心为,则 解得 ,所以 故所求双曲线方程为 例4设椭圆的中心是坐标原点,长轴在轴上,离心率,已知点到这个椭圆上的最远距离是,求这个椭圆的方程.错解:依题意可设椭圆方程为则 ,所以 ,即 设椭圆上的点到点的距离为,则 所以当时,有最大值,从而也有最大值。所以 ,由此解得:于是所求椭圆的方程为错因:尽管上面解法的最后结果是正确的,但这种解法却是错误的。结果正确只是碰巧而已。由当时,有最大值,这步推理是错误的,没有考虑到的取值范围.事实上,由于点在椭圆上,所以有,因此在求的最大值时,应分类讨论.正解:若,则当时,(从而)有最大值.于是从而解得.所以必有,此时当时,(从而)有最大值,所以,解得于是所求椭圆的方程为变式:设椭圆的中心是坐标原点,长轴在轴上,离心率,已知点到这个椭圆上的最远距离是4,求这个椭圆的方程.例5从椭圆,(>b>0)上一点M向x轴所作垂线恰好通过椭圆的左焦点F1,A、B分别是椭圆长、短轴的端点,ABOM设Q是椭圆上任意一点,当QF2AB时,延长QF2与椭圆交于另一点P,若F1PQ的面积为20,求此时椭圆的方程解:本题可用待定系数法求解b=c, =c,可设椭圆方程为PQAB,kPQ=-,则PQ的方程为y=(x-c),代入椭圆方程整理得5x2-8cx+2c2=0,根据弦长公式,得,又点F1到PQ的距离d=c ,由故所求椭圆方程为例6已知椭圆:,过左焦点F作倾斜角为的直线交椭圆于A、B两点,求弦AB的长解:a=3,b=1,c=2; 则F(-2,0)由题意知:与联立消去y得:设A(、B(,则是上面方程的二实根,由违达定理,又因为A、B、F都是直线上的点,所以|AB|=点评:也可利用“焦半径”公式计算 ,例7(06年全国理科)设P是椭圆短轴的一个端点,Q为椭圆上的一个动点,求PQ的最大值.解: 依题意可设P(0,1),Q(),则PQ,又因为Q在椭圆上,所以,PQ2.因为1,1,若,则1,当时,PQ取最大值;若1,则当时,PQ取最大值2.例8已知双曲线的中心在原点,过右焦点F(2,0)作斜率为的直线,交双曲线于M、N 两点,且=4,求双曲线方程解:设所求双曲线方程为,由右焦点为(2,0)知C=2,b2=4-2则双曲线方程为,设直线MN的方程为:,代入双曲线方程整理得:(20-82)x2+122x+54-322=0 设M(x1,y1),N(x2,y2),则, 解得,故所求双曲线方程为:点评:利用待定系数法求曲线方程,运用一元二次方程的根与系数关系将两根之和与积整体代入,体现了数学的整体思想,也简化了计算,要求学生熟练掌握此题不宜用焦半径公式,因为双曲线与过焦点的直线的交点位置不明确,如果分别在两支上计算反而复杂,双曲线的焦半径公式为:过左焦点和左支相交于,则焦半径,过右焦点和右支相交于,则焦半径四、典型习题导练1. 设双曲线两焦点为F1、F2,点Q为双曲线上除顶点外的任一点,过F1作F1QF2的平分线的垂线,垂足为P,则点P的自在轨迹是( )A.椭圆的一部分 B.双曲线的一部分C.抛物线的一部分 D.圆的一部分.解析:这里设|QF1|>|QF2|,根据双曲线的定义,|QF1|-|QF2|=2a即,双曲线上任意一点至二焦点的距离差的绝对值为定值,为2a,延长F1P和QF2,相交于M,PQ是F1QM的角平分线,且PQF1M,则RTF1QPRTMQP,|F1Q|=|QM|,|F2M|=|QM|-|QF2|=|QF1|-|QF2|=2a,|F1P|=|PM|,O是F1F2中点,P为F1M的中点,OP是F1F2M的中位线,|OP|=|F2M|/2=a,无论垂足P在何处,|OP|总是常数为a,故其轨迹是以O为圆心,以a为半径的圆,方程为:a是实半轴长.2已知点(-2,3)与抛物线y2=2px(p0)的焦点的距离是5,则p= 4 .3.平面内有两定点上,求一点P使取得最大值或最小值,并求出最大值和最小值.yxABCP解析::设P点坐标为(x,y),则|AP|2+|BP|2=(x+1)2+y2+(x-1)2+y2=2(x2+y2)+2=2PO2+2 要想上式最小,只需|PO|最小,显然OPC共线时|PO|最小,其中C为圆心。 |PO|的最小值|OC|-2=3 最大值为|OC|+2=7故|AP|2+|BP|2的最小值=20,最大值为100(数形结合)4.已知椭圆的离心率为.(1)若圆(x-2)2+(y-1)2=与椭圆相交于A、B两点且线段AB恰为圆的直径,求椭圆方程;(2)设L为过椭圆右焦点F的直线,交椭圆于M、N两点,且L的倾斜角为600,求的值.(3)在(1)的条件下,椭圆的左右焦点分别为F1、F2,点R在直线l:当F1RF2取最大值时,求 的值.解析:考点:直线与圆锥曲线的综合问题;椭圆的标准方程;椭圆的简单性质专题:综合题分析:(1)设出AB的方程,代入椭圆方程,利用韦达定理及线段AB恰为圆的直径,可求椭圆的方程;(2)设 由椭圆的第二定义,由此可求出的值.(3)当F1RF2取最大值时,过R、F1、F2的圆的圆心角最大,故其半径最小,与直线l相切,利用F1SRRSF2,即可求的值解答:解:(1)设A(x1,y1),B(x2,y2),AB的方程为y-1=k(x-2)即y=kx+1-2k离心率椭圆方程可化为:将代入得(1+2k2)x2+4(1-2k)kx+2(1-2k)2-2b2=0又,所以椭圆的方程为:(2)设 由椭圆的第二定义所以或,由合分比定理得或,即或(3) 当F1RF2取最大值时,过R、F1、F2的圆的圆心角最大,故其半径最小,与直线l相切直线l与x轴于S(-8,0),F1SRRSF2,点评:本题考查椭圆的标准方程与几何性质,考查椭圆的第二定义,考查三角形的相似,正确运用椭圆的性质及第二定义是关键5.已知抛物线方程为,直线过抛物线的焦点F且被抛物线截得的弦长为3,求p的值解析:抛物线的焦点准线方程为,由得,而,所以6.线段AB过x轴正半轴上一点M(m,0)(m>0),端点A、B到x轴距离之积为,以x轴为对称轴,过A,O,B三点作抛物线 (1)求抛物线方程;(2)若的取值范围§7.3 点、直线和圆锥曲线一、知识导学1 点M(x0,y0)与圆锥曲线C:f(x,y)=0的位置关系已知(ab0)的焦点为F1、F2, (a0,b0)的焦点为F1、F2,(p0)的焦点为F,一定点为P(x0,y0),M点到抛物线的准线的距离为d,则有:上述结论可以利用定比分点公式,建立两点间的关系进行证明2直线AxBC=0与圆锥曲线Cf(x,y)0的位置关系:直线与圆锥曲线的位置关系可分为:相交、相切、相离对于抛物线来说,平行于对称轴的直线与抛物线相交于一点,但并不是相切;对于双曲线来说,平行于渐近线的直线与双曲线只有一个交点,但并不相切这三种位置关系的判定条件可引导学生归纳为:设直线:Ax+By+C=0,圆锥曲线C:f(x,y)=0,由消去y(或消去x)得:ax2+bx+c=0,=b2-4ac,(若a0时),0相交 0相离 = 0相切注意:直线与抛物线、双曲线有一个公共点是直线与抛物线、双曲线相切的必要条件,但不是充分条件二、疑难知识导析1椭圆的焦半径公式:(左焦半径),(右焦半径),其中是离心率。 焦点在y轴上的椭圆的焦半径公式: ( 其中分别是椭圆的下上焦点).焦半径公式的两种形式的区别只和焦点的左右有关,而与点在左在右无关 可以记为:左加右减,上减下加.2双曲线的焦半径定义:双曲线上任意一点M与双曲线焦点的连线段,叫做双曲线的焦半径.焦点在x轴上的双曲线的焦半径公式:焦点在y轴上的双曲线的焦半径公式: ( 其中分别是双曲线的下上焦点)3双曲线的焦点弦:定义:过焦点的直线割双曲线所成的相交弦。焦点弦公式: 当双曲线焦点在x轴上时,过左焦点与左半支交于两点时: ;过右焦点与右半支交于两点时:。当双曲线焦点在y轴上时,过下焦点与下半支交于两点时:;过上焦点与上半支交于两点时:。4双曲线的通径:定义:过焦点且垂直于对称轴的相交弦 .5直线和抛物线(1)位置关系:相交(两个公共点或一个公共点);相离(无公共点);相切(一个公共点).联立,得关于x的方程当(二次项系数为零),唯一一个公共点(交点);当,则若,两个公共点(交点);,一个公共点(切点);,无公共点 (相离).(2)相交弦长:弦长公式:.(3)焦点弦公式: 抛物线, .抛物线, .抛物线, .抛物线,.(4)通径:定义:过焦点且垂直于对称轴的相交弦 通径:.(5)常用结论:焦点弦的性质:和和.三、经典例题导讲例1求过点(0,1)的直线,使它与抛物线仅有一个交点.错解: 设所求的过点(0,1)的直线为,则它与抛物线的交点为,消去得整理得 直线与抛物线仅有一个交点,解得所求直线为正解: 当所求直线斜率不存在时,即直线垂直轴,因为过点(0,1),所以即轴,它正好与抛物线相切.当所求直线斜率为零时,直线为y = 1平行轴,它正好与抛物线只有一个交点.一般地,设所求的过点的直线为,则,令解得k = ,所求直线为综上,满足条件的直线为:例2已知曲线C:与直线L:仅有一个公共点,求m的范围.错解:曲线C:可化为,联立,得:,由0,得.错因:方程与原方程并不等价,应加上.正解:原方程的对应曲线应为椭圆的上半部分.(如图),结合图形易求得m的范围为.注意:在将方程变形时应时时注意范围的变化,这样才不会出错.例3已知双曲线,过P(1,1)能否作一条直线L与双曲线交于A、B两点,且P为AB中点.错解:(1)过点P且与x轴垂直的直线显然不符合要求.(2)设过P的直线方程为,代入并整理得:,又 解之得:k=2,故直线方程为:y=2x-1,即直线是存在的.正解:接以上过程,考虑隐含条件“>0”,当k=2时代入方程可知<0,故这样的直线不存在.yxOACDBP例4已知A、B是圆与x轴的两个交点,CD是垂直于AB的动弦,直线AC和DB相交于点P,问是否存在两个定点E、F, 使 | | PE | PF | | 为定值?若存在,求出E、F的坐标;若不存在,请说明理由. 解:由已知得 A (1, 0 )、B ( 1, 0 ), 设 P ( x, y ), C ( ) , 则 D (), 由A、C、P三点共线得 由D、B、P三点共线得 × 得 又 , , 代入得 ,即点P在双曲线上, 故由双曲线定义知,存在两个定点E (, 0 )、F (, 0 )(即此双曲线的焦点),使 | | PE | PF | | = 2 (即此双曲线的实轴长为定值).例5已知椭圆的中心在坐标原点O,焦点在坐标轴上,直线y=x+1 与该椭圆相交于P和Q,且OPOQ,PQ=,求椭圆的方程.解:设所求椭圆的方程为=1. 依题意知,点P、Q的坐标满足方程组: 将代入,整理得 , 设方程的两个根分别为、,则直线y=x+1和椭圆的交点为P(,+1),Q(,+1)由题设OPOQ,OP=,可得 整理得 解这个方程组,得 或 根据根与系数的关系,由式得 (1) 或 (2) 解方程组(1)、(2)得 或故所求椭圆方程为=1 , 或 =1.例6(06年高考湖南)已知椭圆C1:1,抛物线C2:,且C1、C2的公共弦AB过椭圆C1的右焦点。(1)当AB轴时,求、的值,并判断抛物线C2的焦点是否在直线AB上;(2)若,且抛物线C2的焦点在直线AB上,求的值及直线AB的方程.解:(1)当AB轴时,点A、B关于轴对称,所以0,直线AB的方程为1,从而点A的坐标为(1,)或(1,),因为点A在抛物线上,所以,.此时,抛物线C2的焦点坐标为(,0),该焦点不在直线AB上. (2)当抛物线C2的焦点在直线AB上时,由(1)知直线AB的斜率存在,设直线AB的方程为.由消去得设A、B的坐标分别为()、().则,是方程的两根,.因为AB既是过C1的右焦点的弦,又是C2的焦点的弦,所以AB(2)(2)4,且AB()().从而4所以,即解得.因为C2的焦点F、()在直线上,所以,即当时直线AB的方程为;当时直线AB的方程为.四、典型习题导练1顶点在原点,焦点在x轴上的抛物线被直线l:y=2x+1截得的弦长为,则抛物线方程为 2已知直线y=kx1与双曲线x2y2=1的左支交于A、B两点,若另一条直线l经过点P(2,0)及线段AB的中点Q,求直线l在y轴上的截距b的取值范围 解析:设A(x1,y1),B(x2,y2) 由,得(1k2)x2+2kx2=0,又直线AB与双曲线左支交于A、B两点,故有解得k13试求m的取值范围.解析:设,由 得,在上,在椭圆内,所以有所以,所以,故 4 设过原点的直线l与抛物线y2=4(x1)交于A、B两点,且以AB为直径的圆恰好过抛物线的焦点F, (1)求直线l的方程;(2)求|AB|的长.解析:可设,和抛物线方程y2=4(x1)联立消失,用表示圆心,直径,直径= 中点到抛物线焦点(2,0)的距离求解5 如图,过抛物线y2=4x的顶点O作任意两条互相垂直的弦OM、ON,求(1)MN与x轴交点的坐标;(2)求MN中点的轨迹方程.9设曲线C的方程是yx3-x,将C沿x轴、y轴正向分别平行移动t,s单 位长度后得曲线C1.(1)写出曲线C1的方程;(2)证明曲线C与C1关于点A()对称;(3)如果曲线C与C1有且仅有一个公共点,证明s且t0.§7.4轨迹问题一、知识导学1.方程的曲线在平面直角坐标系中,如果某曲线C(看作适合某种条件的点的集合或轨迹 )上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系:(1)曲线上的点的坐标都是这个方程的解;(2)以这个方程的解为坐标的点都是曲线上的点.那么这个方程叫做曲线的方程;这条曲线叫做方程的曲线.2.点与曲线的关系 若曲线C的方程是f(x,y)=0,则点P0(x0,y0)在曲线C上f(x0,y0)=0;点P0(x0,y0)不在曲线C上f(x0,y0)0两条曲线的交点 若曲线C1,C2的方程分别为f1(x,y)=0,f2(x,y)=0,则点P0(x0,y0)是C1,C2的交点方程组有n个不同的实数解,两条曲线就有n个不同的交点;方程组没有实数解,曲线就没有交点.3.圆锥曲线的统一定义平面内的动点P(x,y)到一个定点F(c,0)的距离与到不通过这个定点的一条定直线l的距离之比是一个常数e(e0),则动点的轨迹叫做圆锥曲线.其中定点F(c,0)称为焦点,定直线l称为准线,正常数e称为离心率.当0e1时,轨迹为椭圆当e=1时,轨迹为抛