欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    探索三角形全等的条件(7);.doc

    • 资源ID:58999149       资源大小:78.34KB        全文页数:5页
    • 资源格式: DOC        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    探索三角形全等的条件(7);.doc

    凤凰初中数学配套教学软件_教学设计数学教学设计教材:义务教育教科书·数学(八年级上册)1.3探索三角形全等的条件(7)教学目标1会作一个角的角平分线,能证明作法的正确性,并在经历“观察操作证明”的活动过程中养成善于分析、乐于探究和理性思考的良好习惯2会过一点作已知直线的垂线,能证明作法的正确性,体会与“作一个角的角平分线”作法的联系,在比较中探究作法3能在不同的作图题中感悟相同的知识背景,在同一问题中探求不同的作法,从而进一步把握知识本质,逐步形成抽象概括能力和发散思维教学重点会“作已知角的角平分线”和“过一点作已知直线的垂线” 教学难点几何图形信息转化为尺规操作教学过程(教师)学生活动设计思路图(1)(一)情境创设工人师傅常常利用角尺平分一个角如图(1),在AOB的两边OA、OB上分别任取OCOD,移动角尺,使角尺两边相同的刻度分别与点C、D重合,这时过角尺顶点M的射线OM就是AOB的平分线请同学们说明这样画角平分线的道理提取信息,利用“SSS” 说明画角平分线的道理呈现工人师傅常常利用角尺平分一个角的情境,为探究新知提供“脚手架”,为“探索活动一”的证明提供思路(二)探索活动一图(2)1说 请按序说出木工师傅的“操作”过程2作与写用直尺和圆规在图(2)中按序将木工师傅的“操作”过程作出来,并写出作法3证 请证明你的作法是正确的4用 用直尺和圆规完成以下作图:(1)在图(3)中把MON四等分图(3)(2)在图(4)中作出平角AOB的平分线图(4)说明:过直线上一点作这条直线的垂线就是作以这点为顶点的平角的角平分线积极思考,回答问题,整理成下列形式:取OC=OD移CM=DM画射线OM以O为圆心,任意长为半径作弧,分别交射线OA、OB于点C、D分别以点C、D为圆心,大于CD的长为半径作弧,两弧在AOB的内部交于点M作射线OM说:作:证明:在MOC和MOD中,OCOD, OMOM, CMDM,MOCMOD(SSS),COMDOM,即OM平分AOB通过学生的“说”,进一步加强学生对工人师傅操作过程的理解,引发学生的数学思考,即将相关的几何信息转化为尺规的操作方法“说”与“作”对应,为学生“按序”尺规作图提供更为清晰的流程,这样设计使得学生易想、易作和易写,对突破难点,养成有条理的思考十分有益“用”就是为了巩固新知和发现新法(三)探索活动二1观察思考在图(2)作图的基础上,作过C、D的直线l(如图(5),观察图中射线OM与直线l的位置关系,并说明理由图(5)l2问题变式 你能用圆规和直尺过已知直线外一点作这条直线的垂线吗?(如图(6),经过直线AB外一点P作AB的垂线PQ)图(6)3比较分析引导学生比较新旧两个问题之间的联系,寻求解决新问题的策略4作图与证明(图7)(1)作法步骤1以点P为圆心,适当的长为半径作弧,使它与AB交于C、D步骤2分别以点C、D为圆心,大于Error! No bookmark name given.CD的长为半径作弧,两弧交于点Q步骤3作直线PQ直线PQ就是经过直线AB外一点P的AB的垂线(如图(7)(2)证明略5归纳总结根据活动一中的4(2)与活动二可知:经过一点可用直尺和与圆规作一条直线与已知直线垂直先独立思考,再互相讨论,踊跃回答:1OMl,说明理由略2(1)比较直线l点O直线AB点POM直线lPQ直线AB(2)分析作图的关键是在直线AB上确定C、D两点,使得PCPD;确定点Q,使得CQDQ3学生尝试作图(如图(7)并书写作法:(1)作图;(2)书写作法;(3)证明利用已有的图形进行分析,学生对问题的研究既有亲切感又有探究的欲望,此时顺理成章的提出所研究的问题“类比”是发现解决问题策略的一种有效方式,学生通过比较新旧问题的有关信息,不难发现解决新问题的方法,有效地突破了难点让学生在活动一的基础上尝试“边作边写”,有利于培养学生的作图能力和几何素养;另外另一方面将“作图、作法、证明”融为一体,有利于培养了学生严谨的数学思维(四)知识运用图(8)用直尺和圆规作一个直角三角形,使它的两条直角边分别等于a、b(如图(8)1学生尝试作图;2交流作法;3总结作两条相互垂直直线的方法本题解决的关键是作两条相互垂直的直线,但点的位置没有确定,故根据点的位置的不同可选择不同的解题策略(五)拓展延伸图(9)如图(9),已知A、B是l上的两点,P是l外的一点(1)按照下面画法作图(保留作图痕迹):以A为圆心,AP为半径画弧;以B为圆心,BP为半径画弧;设两弧交于点Q(Q与P分别在l的两旁);连结PQ(2)求证:PQl 1学生按要求独立作图与证明;2小组交流:与前面一种方法进行比较,说明两种方法的异同点相同的问题,不同的解法有利于培养学生的发散思维,激发学生学习几何图形的兴趣通过比较两种不同的方法,进一步加深理解基本作图的知识本质(六)课堂小结知识联系网络图(教师逐一展示,引导学生回顾总结):作已知角的角平分线过直线上的一点作已知直线的垂线过直线外的一点作已知直线的垂线特例变式作法方法1:活动二方法2:拓展延伸过平面上一点作已知直线的垂线作图依据:SSS活动一活动二知识应用:一题多解根据教师对网络图的逐步展示,学生进行回顾和总结因为学生的学习要经历短时记忆到长时记忆过程,而网络化的总结方式有利于长时记忆的形成,有利于完善学生的认知结构,有利于加强知识之间的联系,揭示作图的知识本质(七)课后作业图(10)1已知AOB(如图(10),求作:(1)AOB的平分线OC (2)作射线ODOC(两种作法) (3)在OC上取一点P,作出点P到AOB两边的垂线段,并比较这两条垂线段的大小关系(要求保留作图痕迹,不写作法和证明过程)2查询资料:能利用直尺和圆规将一个角三等分吗? 1作业1由学生独立完成; 2作业2根据学生的实际情况完成,搜集材料后进行全班交流作业1是为了巩固基本作图的几种方法,问题1(2)可培养学生的发散思维,问题1(3)既巩固所学知识,又为后继学习“角平分线的性质”作铺垫;作业2主要是拓展学生知识视野,激发探究欲望第 5 页 共 5 页 2022-11-5

    注意事项

    本文(探索三角形全等的条件(7);.doc)为本站会员(asd****56)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开