欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    PCB设计基础知识印刷电路板.doc

    • 资源ID:60090127       资源大小:26.50KB        全文页数:5页
    • 资源格式: DOC        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    PCB设计基础知识印刷电路板.doc

    PCB设计基础知识印刷电路板.txt22真诚是美酒,年份越久越醇香浓型;真诚是焰火,在高处绽放才愈是美丽;真诚是鲜花,送之于人手有余香。一颗孤独的心需要爱的滋润;一颗冰冷的心需要友谊的温暖;一颗绝望的心需要力量的托慰;一颗苍白的心需要真诚的帮助;一颗充满戒备关闭的门是多么需要真诚这一把钥匙打开呀!PCB设计基础知识印刷电路板(Printed circuit board,PCB)几乎会出现在每一种电子设备当中。如果在某样设备中有电子零件,那么它们也都是镶在大小各异的PCB上。除了固定各种小零件外,PCB的主要功能是提供上头各项零件的相互电气连接。随着电子设备越来越复杂,需要的零件越来越多,PCB上头的线路与零件也越来越密集了。 标准的PCB长得就像这样。裸板(上头没有零件)也常被称为印刷线路板Printed Wiring Board(PWB)。 板子本身的基板是由绝缘隔热、并不易弯曲的材质所制作成。在表面可以看到的细小线路材料是铜箔,原本铜箔是覆盖在整个板子上的,而在制造过程中部份被蚀刻处理掉,留下来的部份就变成网状的细小线路了。这些线路被称作导线(conductor pattern)或称布线,并用来提供PCB上零件的电路连接。为了将零件固定在PCB上面,我们将它们的接脚直接焊在布线上。在最基本的PCB(单面板)上,零件都集中在其中一面,导线则都集中在另一面。这么一来我们就需要在板子上打洞,这样接脚才能穿过板子到另一面,所以零件的接脚是焊在另一面上的。因为如此,PCB的正反面分别被称为零件面(Component Side)与焊接面(Solder Side)。 如果PCB上头有某些零件,需要在制作完成后也可以拿掉或装回去,那么该零件安装时会用到插座(Socket)。由于插座是直接焊在板子上的,零件可以任意的拆装。下面看到的是ZIF(Zero Insertion Force,零拨插力式)插座,它可以让零件(这里指的是CPU)可以轻松插进插座,也可以拆下来。插座旁的固定杆,可以在您插进零件后将其固定。 如果要将两块PCB相互连结,一般我们都会用到俗称金手指的边接头(edge connector)。金手指上包含了许多裸露的铜垫,这些铜垫事实上也是PCB布线的一部份。通常连接时,我们将其中一片PCB上的金手指插进另一片PCB上合适的插槽上(一般叫做扩充槽Slot)。在计算机中,像是显示卡,声卡或是其它类似的界面卡,都是借着金手指来与主机板连接的。 PCB上的绿色或是棕色,是阻焊漆(solder mask)的颜色。这层是绝缘的防护层,可以保护铜线,也可以防止零件被焊到不正确的地方。在阻焊层上另外会印刷上一层丝网印刷面(silk screen)。通常在这上面会印上文字与符号(大多是白色的),以标示出各零件在板子上的位置。丝网印刷面也被称作图标面(legend)。 单面板(Single-Sided Boards) 我们刚刚提到过,在最基本的PCB上,零件集中在其中一面,导线则集中在另一面上。因为导线只出现在其中一面,所以我们就称这种PCB叫作单面板(Single-sided)。因为单面板在设计线路上有许多严格的限制(因为只有一面,布线间不能交叉而必须绕独自的路径),所以只有早期的电路才使用这类的板子。 双面板(Double-Sided Boards) 这种电路板的两面都有布线。不过要用上两面的导线,必须要在两面间有适当的电路连接才行。这种电路间的桥梁叫做导孔(via)。导孔是在PCB上,充满或涂上金属的小洞,它可以与两面的导线相连接。因为双面板的面积比单面板大了一倍,而且因为布线可以互相交错(可以绕到另一面),它更适合用在比单面板更复杂的电路上。 多层板(Multi-Layer Boards) 为了增加可以布线的面积,多层板用上了更多单或双面的布线板。多层板使用数片双面板,并在每层板间放进一层绝缘层后黏牢(压合)。板子的层数就代表了有几层独立的布线层,通常层数都是偶数,并且包含最外侧的两层。大部分的主机板都是4到8层的结构,不过技术上可以做到近100层的PCB板。大型的超级计算机大多使用相当多层的主机板,不过因为这类计算机已经可以用许多普通计算机的集群代替,超多层板已经渐渐不被使用了。因为PCB中的各层都紧密的结合,一般不太容易看出实际数目,不过如果您仔细观察主机板,也许可以看出来。 我们刚刚提到的导孔(via),如果应用在双面板上,那么一定都是打穿整个板子。不过在多层板当中,如果您只想连接其中一些线路,那么导孔可能会浪费一些其它层的线路空间。埋孔(Buried vias)和盲孔(Blind vias)技术可以避免这个问题,因为它们只穿透其中几层。盲孔是将几层内部PCB与表面PCB连接,不须穿透整个板子。埋孔则只连接内部的PCB,所以光是从表面是看不出来的。 在多层板PCB中,整层都直接连接上地线与电源。所以我们将各层分类为信号层(Signal),电源层(Power)或是地线层(Ground)。如果PCB上的零件需要不同的电源供应,通常这类PCB会有两层以上的电源与电线层。 零件封装技术 插入式封装技术(Through Hole Technology) 将零件安置在板子的一面,并将接脚焊在另一面上,这种技术称为插入式(Through Hole Technology,THT)封装。这种零件会需要占用大量的空间,并且要为每只接脚钻一个洞。所以它们的接脚其实占掉两面的空间,而且焊点也比较大。但另一方面,THT零件和SMT(Surface Mounted Technology,表面黏着式)零件比起来,与PCB连接的构造比较好,关于这点我们稍后再谈。像是排线的插座,和类似的界面都需要能耐压力,所以通常它们都是THT封装。 表面黏贴式封装技术(Surface Mounted Technology) 使用表面黏贴式封装(Surface Mounted Technology,SMT)的零件,接脚是焊在与零件同一面。这种技术不用为每个接脚的焊接,而都在PCB上钻洞。 表面黏贴式的零件,甚至还能在两面都焊上。 SMT也比THT的零件要小。和使用THT零件的PCB比起来,使用SMT技术的PCB板上零件要密集很多。SMT封装零件也比THT的要便宜。所以现今的PCB上大部分都是SMT,自然不足为奇。 因为焊点和零件的接脚非常的小,要用人工焊接实在非常难。不过如果考虑到目前的组装都是全自动的话,这个问题只会出现在修复零件的时候吧。 设计流程 在PCB的设计中,其实在正式布线前,还要经过很漫长的步骤,以下就是主要设计的流程: 系统规格 首先要先规划出该电子设备的各项系统规格。包含了系统功能,成本限制,大小,运作情形等等。 系统功能区块图 接下来必须要制作出系统的功能方块图。方块间的关系也必须要标示出来。 将系统分割几个PCB 将系统分割数个PCB的话,不仅在尺寸上可以缩小,也可以让系统具有升级与交换零件的能力。系统功能方块图就提供了我们分割的依据。像是计算机就可以分成主机板、显示卡、声卡、软盘驱动器和电源等等。 决定使用封装方法,和各PCB的大小 当各PCB使用的技术和电路数量都决定好了,接下来就是决定板子的大小了。如果设计的过大,那么封装技术就要改变,或是重新作分割的动作。在选择技术时,也要将线路图的品质与速度都考量进去。 绘出所有PCB的电路概图 概图中要表示出各零件间的相互连接细节。所有系统中的PCB都必须要描出来,现今大多采用CAD(计算机辅助设计,Computer Aided Design)的方式。下面就是使用CircuitMakerTM设计的范例。 PCB的电路概图 初步设计的仿真运作 为了确保设计出来的电路图可以正常运作,这必须先用计算机软件来仿真一次。这类软件可以读取设计图,并且用许多方式显示电路运作的情况。这比起实际做出一块样本PCB,然后用手动测量要来的有效率多了。 将零件放上PCB 零件放置的方式,是根据它们之间如何相连来决定的。它们必须以最有效率的方式与路径相连接。所谓有效率的布线,就是牵线越短并且通过层数越少(这也同时减少导孔的数目)越好,不过在真正布线时,我们会再提到这个问题。下面是总线在PCB上布线的样子。为了让各零件都能够拥有完美的配线,放置的位置是很重要的。 测试布线可能性,与高速下的正确运作 现今的部份计算机软件,可以检查各零件摆设的位置是否可以正确连接,或是检查在高速运作下,这样是否可以正确运作。这项步骤称为安排零件,不过我们不会太深入研究这些。如果电路设计有问题,在实地导出线路前,还可以重新安排零件的位置。 导出PCB上线路 在概图中的连接,现在将会实地作成布线的样子。这项步骤通常都是全自动的,不过一般来说还是需要手动更改某些部份。下面是2层板的导线模板。红色和蓝色的线条,分别代表PCB的零件层与焊接层。白色的文字与四方形代表的是网版印刷面的各项标示。红色的点和圆圈代表钻洞与导孔。最右方我们可以看到PCB上的焊接面有金手指。这个PCB的最终构图通常称为工作底片(Artwork)。 每一次的设计,都必须要符合一套规定,像是线路间的最小保留空隙,最小线路宽度,和其它类似的实际限制等。这些规定依照电路的速度,传送信号的强弱,电路对耗电与噪声的敏感度,以及材质品质与制造设备等因素而有不同。如果电流强度上升,那导线的粗细也必须要增加。为了减少PCB的成本,在减少层数的同时,也必须要注意这些规定是否仍旧符合。如果需要超过2层的构造的话,那么通常会使用到电源层以及地线层,来避免信号层上的传送信号受到影响,并且可以当作信号层的防护罩。 导线后电路测试 为了确定线路在导线后能够正常运作,它必须要通过最后检测。这项检测也可以检查是否有不正确的连接,并且所有联机都照着概图走。 建立制作档案 因为目前有许多设计PCB的CAD工具,制造厂商必须有符合标准的档案,才能制造板子。标准规格有好几种,不过最常用的是Gerber files规格。一组Gerber files包括各信号、电源以及地线层的平面图,阻焊层与网板印刷面的平面图,以及钻孔与取放等指定档案。 电磁兼容问题 没有照EMC(电磁兼容)规格设计的电子设备,很可能会散发出电磁能量,并且干扰附近的电器。EMC对电磁干扰(EMI),电磁场(EMF)和射频干扰(RFI)等都规定了最大的限制。这项规定可以确保该电器与附近其它电器的正常运作。EMC对一项设备,散射或传导到另一设备的能量有严格的限制,并且设计时要减少对外来EMF、EMI、RFI等的磁化率。换言之,这项规定的目的就是要防止电磁能量进入或由装置散发出。这其实是一项很难解决的问题,一般大多会使用电源和地线层,或是将PCB放进金属盒子当中以解决这些问题。电源和地线层可以防止信号层受干扰,金属盒的效用也差不多。对这些问题我们就不过于深入了。 电路的最大速度得看如何照EMC规定做了。内部的EMI,像是导体间的电流耗损,会随着频率上升而增强。如果两者之间的的电流差距过大,那么一定要拉长两者间的距离。这也告诉我们如何避免高压,以及让电路的电流消耗降到最低。布线的延迟率也很重要,所以长度自然越短越好。所以布线良好的小PCB,会比大PCB更适合在高速下运作。 制造流程 PCB的制造过程由玻璃环氧树脂(Glass Epoxy)或类似材质制成的基板开始影像(成形导线制作) 制作的第一步是建立出零件间联机的布线。我们采用负片转印(Subtractive transfer)方式将工作底片表现在金属导体上。这项技巧是将整个表面铺上一层薄薄的铜箔,并且把多余的部份给消除。追加式转印(Additive Pattern transfer)是另一种比较少人使用的方式,这是只在需要的地方敷上铜线的方法,不过我们在这里就不多谈了。 如果制作的是双面板,那么PCB的基板两面都会铺上铜箔,如果制作的是多层板,接下来的步骤则会将这些板子黏在一起。 接下来的流程图,介绍了导线如何焊在基板上。 正光阻剂(positive photoresist)是由感光剂制成的,它在照明下会溶解(负光阻剂则是如果没有经过照明就会分解)。有很多方式可以处理铜表面的光阻剂,不过最普遍的方式,是将它加热,并在含有光阻剂的表面上滚动(称作干膜光阻剂)。它也可以用液态的方式喷在上头,不过干膜式提供比较高的分辨率,也可以制作出比较细的导线。 遮光罩只是一个制造中PCB层的模板。在PCB板上的光阻剂经过UV光曝光之前,覆盖在上面的遮光罩可以防止部份区域的光阻剂不被曝光(假设用的是正光阻剂)。这些被光阻剂盖住的地方,将会变成布线。 在光阻剂显影之后,要蚀刻的其它的裸铜部份。蚀刻过程可以将板子浸到蚀刻溶剂中,或是将溶剂喷在板子上。一般用作蚀刻溶剂的有,氯化铁(Ferric Chloride),碱性氨(Alkaline Ammonia),硫酸加过氧化氢(Sulfuric Acid + Hydrogen Peroxide),和氯化铜(Cupric Chloride)等。蚀刻结束后将剩下的光阻剂去除掉。这称作脱膜(Stripping)程序。钻孔与电镀 如果制作的是多层PCB板,并且里头包含埋孔或是盲孔的话,每一层板子在黏合前必须要先钻孔与电镀。如果不经过这个步骤,那么就没办法互相连接了。 在根据钻孔需求由机器设备钻孔之后,孔璧里头必须经过电镀(镀通孔技术,Plated-Through-Hole technology,PTH)。在孔璧内部作金属处理后,可以让内部的各层线路能够彼此连接。在开始电镀之前,必须先清掉孔内的杂物。这是因为树脂环氧物在加热后会产生一些化学变化,而它会覆盖住内部PCB层,所以要先清掉。清除与电镀动作都会在化学制程中完成。 多层PCB压合 各单片层必须要压合才能制造出多层板。压合动作包括在各层间加入绝缘层,以及将彼此黏牢等。如果有透过好几层的导孔,那么每层都必须要重复处理。多层板的外侧两面上的布线,则通常在多层板压合后才处理。 处理阻焊层、网版印刷面和金手指部份电镀 接下来将阻焊漆覆盖在最外层的布线上,这样一来布线就不会接触到电镀部份外了。网版印刷面则印在其上,以标示各零件的位置,它不能够覆盖在任何布线或是金手指上,不然可能会减低可焊性或是电流连接的稳定性。金手指部份通常会镀上金,这样在插入扩充槽时,才能确保高品质的电流连接。 测试 测试PCB是否有短路或是断路的状况,可以使用光学或电子方式测试。光学方式采用扫描以找出各层的缺陷,电子测试则通常用飞针探测仪(Flying-Probe)来检查所有连接。电子测试在寻找短路或断路比较准确,不过光学测试可以更容易侦测到导体间不正确空隙的问题。 零件安装与焊接 最后一项步骤就是安装与焊接各零件了。无论是THT与SMT零件都利用机器设备来安装放置在PCB上。 THT零件通常都用叫做波峰焊接(Wave Soldering)的方式来焊接。这可以让所有零件一次焊接上PCB。首先将接脚切割到靠近板子,并且稍微弯曲以让零件能够固定。接着将PCB移到助溶剂的水波上,让底部接触到助溶剂,这样可以将底部金属上的氧化物给除去。在加热PCB后,这次则移到融化的焊料上,在和底部接触后焊接就完成了。 自动焊接SMT零件的方式则称为再流回焊接(Over Reflow Soldering)。里头含有助溶剂与焊料的糊状焊接物,在零件安装在PCB上后先处理一次,经过PCB加热后再处理一次。待PCB冷却之后焊接就完成了,接下来就是准备进行PCB的最终测试了节省制造成本的方法 为了让PCB的成本能够越低越好,有许多因素必须要列入考量: 板子的大小自然是个重点。板子越小成本就越低。部份的PCB尺寸已经成为标准,只要照着尺寸作那么成本就自然会下降。CustomPCB网站上有一些关于标准尺寸的信息。 使用SMT会比THT来得省钱,因为PCB上的零件会更密集(也会比较小)。 另一方面,如果板子上的零件很密集,那么布线也必须更细,使用的设备也相对的要更高阶。同时使用的材质也要更高级,在导线设计上也必须要更小心,以免造成耗电等会对电路造成影响的问题。这些问题带来的成本,可比缩小PCB尺寸所节省的还要多。 层数越多成本越高,不过层数少的PCB通常会造成大小的增加。 钻孔需要时间,所以导孔越少越好。 埋孔比贯穿所有层的导孔要贵。因为埋孔必须要在接合前就先钻好洞。 板子上孔的大小是依照零件接脚的直径来决定。如果板子上有不同类型接脚的零件,那么因为机器不能使用同一个钻头钻所有的洞,相对的比较耗时间,也代表制造成本相对提升。 使用飞针式探测方式的电子测试,通常比光学方式贵。一般来说光学测试已经足够保证PCB上没有任何错误。 总而言之,厂商在设备上下的工夫也是越来越复杂了。了解PCB的制造过程是很有用的,因为当我们在比较主机板时,相同效能的板子成本可能不同,稳定性也各异,这也让我们得以比较各厂商的能力。 好的工程师可以光看主机板设计,就知道设计品质的好坏。您也许自认没那么强,不过下次您拿到主机板或是显示卡时,不妨先鉴赏一下PCB设计之美吧!PCB工艺的一些小原则 印刷导线宽度选择依据: 印刷导线的最小宽度与流过导线的电流大小有关: 1: 线宽太小,刚印刷导线电阻大,线上的电压降也就大,影响电路的性能, 线宽太宽,则布线密度不高,板面积增加,除了增加成本外,也不利于小型化. 如果电流负荷以20A/平方毫米计算,当覆铜箔厚度为0.5MM时,(一般为这么多,)则1MM(约40MIL)线宽的电流负荷为1A, 因此,线宽取1-2.54MM(40-100MIL)能满足一般的应用要求,大功率设备板上的地线和电源,根据功率大小,可适当增加线宽,而在小功率的数字电路上,为了提高布线密度,最小线宽取0.254-1.27MM(10-15MIL)就能满足. 同一电路板中,电源线.地线比信号线粗. 2: 线间距:当为1.5MM(约为60MIL)时,线间绝缘电阻大于20M欧,线间最大耐压可达300V, 当线间距为1MM(40MIL)时,线间最大耐压为200V,因此,在中低压(线间电压不大于200V)的电路板上,线间距取1.0-1.5MM (40-60MIL)在低压电路,如数字电路系统中,不必考虑击穿电压,只要生产工艺允许,可以很小. 3: 焊盘: 对于1/8W的电阻来说,焊盘引线直径为28MIL就足够了, 而对于1/2W的来说,直径为32MIL,引线孔偏大,焊盘铜环宽度相对减小,导致焊盘的附着力下降.容易脱落, 引线孔太小,元件播装困难. 4: 画电路边框: 边框线与元件引脚焊盘最短距离不能小于2MM,(一般取5MM较合理)否则下料困难. 5:元件布局原则: A 一般原则:在PCB设计中,如果电路系统同时存在数字电路和模拟电路.以及大电流电路,则必须分开布局,使各系统之间藕合达到最小在同一类型电路中,按信号流向及功能,分块,分区放置元件. B: 输入信号处理单元,输出信号驱动元件应靠近电路板边,使输入输出信号线尽可能短,以减小输入输出的干扰. C: 元件放置方向: 元件只能沿水平和垂直两个方向排列.否则不得于插件. D:元件间距.对于中等密度板,小元件,如小功率电阻,电容,二极管,等分立元件彼此的间距与插件,焊接工艺有关, 波峰焊接时,元件间距可以取50-100MIL(1.27-2.54MM)手工可以大些,如取100MIL,集成电路芯片,元件间距一般为100-150MIL E: 当元件间电位差较大时,元件间距应足够大,防止出现放电现象. F: 在而已进IC去藕电容要靠近芯片的电源秋地线引脚.不然滤波效果会变差.在数字电路中,为保证数字电路系统可靠工作, 在每一数字集成电路芯片的电源和地之间均放置IC去藕电容.去藕电容一般采用瓷片电容,容量为0.010.1UF去藕电容容量的选择一般按系统工作频率F的倒数选择.此外,在电路电源的入口处的电源线和地线之间也需加接一个10UF的电容, 以及一个0.01UF的瓷片电容. G: 时针电路元件尽量靠近单片机芯片的时钟信号引脚,以减小时钟电路的连线长度.且下面最好不要走线.

    注意事项

    本文(PCB设计基础知识印刷电路板.doc)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开