欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    利用空间向量求空间角.doc

    • 资源ID:60093084       资源大小:399.50KB        全文页数:13页
    • 资源格式: DOC        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    利用空间向量求空间角.doc

    高二二部数学学案NO.29立体几何中的向量方法利用空间向量求空间角设计人:李凤英 审核人:苏瑞娟 时间:12.31【课程标准】能用向量法解决线线、线面、面面的夹角的计算问题,体会向量方法在研究几何问题中的作用【学习目标】1、使学生学会求异面直线所成的角、直线与平面所成的角、二面角的向量方法;2、使学生能够应用向量方法解决一些简单的立体几何问题;3、使学生的分析与推理能力和空间想象能力得到提高.【自主学习】1. 异面直线所成的角、线面角、二面角的范围分别是什么?2.两向量的夹角的范围是什么?3、向量的有关知识(1)两向量数量积的定义:(2)两向量夹角公式:(3)什么是直线的方向向量?什么是平面的法向量?【典型例题】例1.在RtAOB中,AOB=90°,现将AOB沿着平面AOB的法向量方向平移到A1O1B1的位置,已知OA=OB=O O 1,取A1B1 、A1O1的中点D1 、F1,求异面直线BD1与AF1所成的角的余弦值。 ABOB1O1F1A1D1 例2正方体ABCD-A1B1C1D1的棱长为1,点E、F分别为CD、DD1的中点, (1)求直线B1C1与平面AB1C所成的角的正弦值;(2)求二面角F-AE-D的余弦值。 AA1C1B1DCBD1EF 例3 如图,甲站在水库底面上的点A处,乙站在水坝斜面上的点B处.从A,B到直线 (库底与水坝的交线)的距离AC和BD分别为 a 和b,CD的长为c , AB的长为d .求库底与水坝所成二面角的余弦值. ACBD 巩固练习:如图,已知:直角梯形OABC中,OABC,AOC=90°,SO平面OABC,且OS=OC=BC=1,OA=2.求异面直线SA和OB所成的角的余弦值; OS与平面SAB所成角的正弦值; 二面角BASO的余弦值. OABCS ACBD教学过程一、复习引入1、用空间向量解决立体几何问题的“三步曲”(1)建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线、平面,把立体几何问题转化为向量问题;(化为向量问题)(2)通过向量运算,研究点、直线、平面之间的位置关系以及它们之间距离和夹角等问题;(进行向量运算)(3)把向量的运算结果“翻译”成相应的几何意义。(回到图形)二、知识讲解与典例分析知识点1、异面直线所成的角(范围: )(1)定义:过空间任意一点o分别作异面直线a与b的平行线a´与b´,那么直线a´与b´ 所成的不大于90°的角 ,叫做异面直线a与b 所成的角。a´b´oab(2)用向量法求异面直线所成角设两异面直线a、b的方向向量分别为 和 , 问题1 当与的夹角不大于90°时,异面直线a、b 所成的角 与 和 的夹角的关系? 相等问题 2 当与的夹角大于90°时,异面直线a、b 所成的角 与和 的夹角的关系? 互补所以,异面直线a、b所成的角的余弦值为=nm,coscosq典型例题1:在RtAOB中,AOB=90°,现将AOB沿着平面AOB的法向量方向平移到A1O1B1的位置,已知OA=OB=OO1,取A1B1 、A1O1的中点D1 、F1,求异面直线BD1与AF1所成的角的余弦值。 解:以点O为坐标原点建立空间直角坐标系,并设OA=1,则A(1,0,0) B(0,1,0) F1( ,0,1) D1( , ,1)所以,异面直线BD1与AF1所成的角的余弦值为知识点2、直线与平面所成的角(范围: )BAOnBAOn据图分析出直线与平面所成的角的正弦值为 = 典型例题2:正方体ABCD-A1B1C1D1的棱长为1,点E、F分别为CD、DD1的中点, A1zC1AD (1)求直线B1C1与平面AB1C所成的角的正弦值;D1 (2)求二面角F-AE-D的余弦值。B1yBCx解: (1)以点A为坐标原点建立空间直角坐标系,如图所示,则:A(0,0,0) B1(1,0,1) C(1,1,0) C1(1,1,1)设平面AB1C的法向量为n =(x1,y1,z1),所以X1+z1=0X1+y1=0取x1=1,得y1=z1=-1故所求直线B1C1与平面AB1C所成的角的正弦值为n1n23、二面角(范围: )n1n2典型例题2 (2)点E、F分别为CD、DD1的中点,求二面角F-AE-D的余弦值。解:(2)由题意知设平面AEF的法向量为m=(x2,y2,z2),故m=(-2, 1,-2)取y2=1,得x2=z2=-2所以又平面AED的法向量为AA1=(0,0,1) 观察图形知,二面角F-AE-D为锐角,所以所求二面角F-AE-D的余弦值为典型例题3 如图,甲站在水库底面上的点A处,乙站在水坝斜面上的点B处.从A,B到直线 (库底与水坝的交线)的距离AC和BD分别为 a 和 b ,CD的长为c , AB的长为d .求库底与水坝所成二面角的余弦值. 解:如图根据向量的加法法则, 于是,得设向量 与 的夹角为,就是库与水坝所成的二面角.因此 所以 库底与水坝所成二面角的余弦值是OABCS三、巩固练习如图,已知:直角梯形OABC中,OABC,AOC=90°,SO平面OABC,且OS=OC=BC=1,OA=2.求 异面直线SA和OB所成的角的余弦值;直线OS与平面SAB所成角的正弦值; 二面角BASO的余弦值.四、课堂小结 1、异面直线所成的角 2、直线和平面所成的角 3、二面角 或五、布置作业 课本第112页A组第6题

    注意事项

    本文(利用空间向量求空间角.doc)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开