欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    万有引力定律应用的12种典型案例讲课教案.ppt

    • 资源ID:60173084       资源大小:677.50KB        全文页数:40页
    • 资源格式: PPT        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    万有引力定律应用的12种典型案例讲课教案.ppt

    万有引力定律应用(yngyng)的12种典型案例万有引力定律不仅是高考的一个大重点,而且是自然科学的一个重大课题,也是同学们最感兴趣的科学论题之一。特别是我国“神州五号”载人飞船(fi chun)的发射成功,更激发了同学们研究卫星,探索宇宙的信心。下面我们就来探讨一下万有引力定律在天文学上应用的12个典型案例:第一页,共40页。【案例1】天体的质量与密度(md)的估算下列哪一组数据能够估算出地球的质量()A.月球绕地球运行的周期与月地之间的距离B.地球表面的重力加速度与地球的半径(bnjng)C.绕地球运行卫星的周期与线速度D.地球表面卫星的周期与地球的密度ABC第二页,共40页。解析:人造地球卫星环绕地球做匀速圆周运动(yndng)。月球也是地球的一颗卫星。设地球的质量为M,卫星的质量为m,卫星的运行周期为T,轨道半径为r根据万有引力定律:得:可见A正确由知C正确(zhngqu)第三页,共40页。可见(kjin)D错误地球表面的物体,其重力近似等于地球对物体的引力由 得:可见(kjin)B正确对地球表面的卫星(wixng),轨道半径等于地球的半径,r=R由于结合(jih)得:【探讨评价】根据牛顿定律,只能求出中心天体的质量,不能解决环绕天体的质量;能够根据已知条件和已知的常量,运用物理规律估算物理量,这也是高考对学生的要求。总之,牛顿万有引力定律是解决天体运动问题的关键。第四页,共40页。【案例(n l)2】普通卫星的运动问题我国自行研制发射的“风云一号”“风云二号”气象卫星的运行轨道(gudo)是不同的。“风云一号”是极地圆形轨道(gudo)卫星,其轨道(gudo)平面与赤道平面垂直,周期为12 h,“风云二号”是同步轨道(gudo)卫星,其运行轨道(gudo)就是赤道平面,周期为24 h。问:哪颗卫星的向心加速度大?哪颗卫星的线速度大?若某天上午8点,“风云一号”正好通过赤道附近太平洋上一个小岛的上空,那么“风云一号”下次通过该岛上空的时间应该是多少?第五页,共40页。解析:本题主要考察(koch)普通卫星的运动特点及其规律由开普勒第三定律T2r3知:“风云二号”卫星的轨道半径较大又根据牛顿万有引力定律 得:可见(kjin)“风云一号”卫星的向心加速度大,可见“风云一号”卫星的线速度大,“风云一号”下次通过该岛上空,地球(dqi)正好自转一周,故需要时间24h,即第二天上午8点钟。第六页,共40页。【探讨评价】由万有引力(wn yu ynl)定律得:所有运动学量量都是r的函数。我们应该(ynggi)建立函数的思想。运动学量v、a、f随着r的增加而减小,只有T随着r的增加而增加。任何卫星的环绕速度不大于7.9km/s,运动周期不小于85min。学会总结规律,灵活运用规律解题也是一种重要的学习方法。第七页,共40页。【案例(n l)3】同步卫星的运动下列关于地球同步卫星的说法中正确的是:A、为避免通讯卫星在轨道上相撞,应使它们运行在不同的轨道上B、通讯卫星定点在地球赤道上空某处,所有通讯卫星的周期都是24hC、不同国家发射通讯卫星的地点不同,这些卫星的轨道不一定在同一平面(pngmin)上D、不同通讯卫星运行的线速度大小是相同的,加速度的大小也是相同的。BD第八页,共40页。解析:本题考察地球同步卫星的特点及其规律。同步卫星运动的周期(zhuq)与地球自转周期(zhuq)相同,T=24h,角速度一定根据万有引力定律得知通讯卫星的运行轨道是一定的,离开地面的高度也是一定的。地球对卫星的引力提供了卫星做圆周运动的向心力,因此同步卫星只能以地心为为圆心做圆周运动,它只能与赤道同平面(pngmin)且定点在赤道平面(pngmin)的正上方。故B正确,C错误。第九页,共40页。不同通讯卫星因轨道半径相同,速度大小相等,故无相对运动(xin du yn dn),不会相撞,A错误。由知:通讯卫星运行的线速度、向心加速度大小一定(ydng)。故正确答案是:B、D【探讨评价】通讯卫星即地球同步通讯卫星,它的特点是:与地球自转周期相同,角速度相同;与地球赤道同平面,在赤道的正上方,高度一定(ydng),绕地球做匀速圆周运动;线速度、向心加速度大小相同。三颗同步卫星就能覆盖地球。第十页,共40页。【案例4】“双星(shungxng)”问题天文学中把两颗距离比较近,又与其它星体距离比较远的星体叫做双星,双星的间距是一定的。设双星的质量分别(fnbi)是m1、m2,星球球心间距为L。问:两星体各做什么运动?两星的轨道半径各多大?两星的速度各多大?第十一页,共40页。解析:本题主要考察双星的特点及其运动规律由于(yuy)双星之间只存在相互作用的引力,质量不变,距离一定,则引力大小一定,根据牛顿第二定律知道,每个星体的加速度大小不变。因此它们只能做匀速圆周运动。由牛顿定律 得:又 解得:r1=m2L/(m1+m2)r2=m1L/(m1+m2)第十二页,共40页。由得:【探讨评价】双星的特点就是距离一定,它们间只存在相互作用的引力,引力又一定,从而加速度大小就是一个定值,这样的运动只能是匀速圆周运动。这个结论很重要。同时利用对称性,巧妙解题,找到结论的规律,搞清结论的和谐(hxi)美与对称美对我们以后的学习也很有帮助。第十三页,共40页。【案例(n l)5】“两星”问题如图是在同一平面不同轨道上运行的两颗人造地球卫星。设它们运行的周期分别是T1、T2,(T1T2),且某时刻两卫星相距最近(zujn)。问:两卫星再次相距最近(zujn)的时间是多少?两卫星相距最远的时间是多少?第十四页,共40页。解析:本题考察(koch)同一平面不同轨道上运行的两颗人造地球卫星的位置特点及其卫星的运动规律依题意,T1T2,周期大的轨道半径大,故外层轨道运动的卫星运行一周的时间长。设经过t两星再次相距最近,则它们运行的角度之差 解得:两卫星相距最远时,它们运行(ynxng)的角度之差第十五页,共40页。k=0.1.2解得:k=0.1.2【探讨(tnto)评价】曲线运动求解时间,常用公式=t;通过作图,搞清它们转动的角度关系,以及终边相同的角,是解决这类问题的关键。第十六页,共40页。【案例6】同步卫星的发射(fsh)问题发射地球同步卫星时,先将卫星发射至近地圆形轨道1运行,然后点火,使其沿椭圆轨道2运行,最后再次点火,将卫星送入同步圆形轨道3运行。设轨道1、2相切于Q点,轨道2、3相切于P点,则卫星分别(fnbi)在1、2、3轨道上正常运行时,比较卫星经过轨道1、2上的Q点的加速度的大小;以及卫星经过轨道2、3上的P点的加速度的大小设卫星在轨道1、3上的速度大小为v1、v3,在椭圆轨道上Q、P点的速度大小分别(fnbi)是v2、v2/,比较四个速度的大小第十七页,共40页。解析:同步卫星的发射有两种方法,本题提供了同步卫星的一种发射方法,并考察了卫星在不同轨道上运动的特点。根据牛顿第二定律,卫星的加速度是由于地球(dqi)吸引卫星的引力产生的。即:可见卫星在轨道2、3上经过P点的加速度大小相等;卫星在轨道1、2上经过Q点的加速度大小也相等;但P点的加速度小于Q点的加速度。第十八页,共40页。1、3轨道为卫星(wixng)运行的圆轨道,卫星(wixng)只受地球引力做匀速圆周运动由 可见:v1v3由开普勒第二定律(dngl)知,卫星在椭圆轨道上的运动速度大小不同,近地点Q速度大,远地点速度小,即:v2v2/卫星由近地轨道向椭圆轨道运动以及由椭圆轨道向同步轨道运动的过程中,引力小于向心力,第十九页,共40页。卫星做离心运动(yndng),因此随着轨道半径r增大,卫星运动(yndng)速度增大,它做加速运动(yndng),可见:v2v1,v3v2/因此:v2v1v3v2/【探讨评价】卫星运动(yndng)的加速度是由地球对卫星的引力提供的,所以研究加速度首先应考虑牛顿第二定律;卫星向外轨道运行时,做离心运动(yndng),半径增大,速度必须增大,只能做加速运动(yndng)。同步卫星是怎样发射的呢?通过上面的例题及教材学习,我们知道:同步卫星的发射有两种方法,一是直接发射到同步轨道;二是先发射到近地轨道,然后再加速进入椭圆轨道,再加速进入地球的同步轨道。第二十页,共40页。【案例7】“连续(linx)群”与“卫星群”土星的外层有一个环,为了判断它是土星的一部分,即土星的“连续群”,还是土星的“卫星群”,可以通过测量环中(hun zhn)各层的线速度v与该层到土星中心的距离R之间的关系来判断:()A、若vR,则该层是土星的连续群B、若v2R,则该层是土星的卫星群C、若,则该层是土星的连续群D、若,则该层是土星的卫星群AD第二十一页,共40页。解析:本题(bnt)考察连续物与分离物的特点与规律该环若是土星的连续群,则它与土星有共同的自转角速度,因此vR该环若是土星的卫星群,由万有引力定律 得:故A、D正确【探讨评价】土星也在自转,能分清环是土星上的连带物,还是土星的卫星,搞清运用的物理规律,是解题的关键。同时(tngsh)也要注意,卫星不一定都是同步卫星。第二十二页,共40页。【案例8】宇宙空间站上的“完全失重(sh zhng)”问题假定宇宙空间站绕地球做匀速圆周运动,则在空间站上,下列实验不能做成的是:A、天平称物体的质量B、用弹簧秤测物体的重量C、用测力计测力D、用水银气压计测飞船上密闭仓内的气体压强E、用单摆测定重力加速度F、用打点(d din)计时器验证机械能守恒定律第二十三页,共40页。解析:本题考察了宇宙空间站上的“完全失重”现象。宇宙飞船绕地球做匀速圆周运动时,地球对飞船的引力(ynl)提供了向心加速 ,可见 对于飞船上的物体,设F为“视重”,根据牛顿第二定律得:解得:F=0,这就是完全失重。在完全失重状态下,引力方向上物体受的弹力(tnl)等于零,物体的重力等于引力,因此只有C、F实验可以进行。其它的实验都不能进行。第二十四页,共40页。【探讨评价(pngji)】当物体的加速度等于重力加速度时,引力方向上物体受的弹力等于零,但物体的重力并不等于零;在卫星上或宇宙空间站上人可以做机械运动,但不能测定物体的重力。第二十五页,共40页。【案例(n l)9】黑洞问题“黑洞”问题是爱因斯坦广义(gungy)相对论中预言的一种特殊的天体。它的密度很大,对周围的物质(包括光子)有极强的吸引力。根据爱因斯坦理论,光子是有质量的,光子到达黑洞表面时,也将被吸入,最多恰能绕黑洞表面做圆周运动。根据天文观察,银河系中心可能有一个黑洞,距离可能黑洞为6.01012m远的星体正以2.0106m/s的速度绕它旋转,据此估算该可能黑洞的最大半径是多少?(保留一位有效数字)第二十六页,共40页。解析:本题考察“黑洞”的基本知识,这是一道信息题。黑洞做为一种特殊的天体,一直受到人们广泛的关注,种种迹象表明,它确实存在于人的视野之外。黑洞之黑,就在于光子也逃不出它的引力约束。光子绕黑洞做匀速圆周运动时,它的轨道半径就是黑洞的最大可能半径。设光子的质量为m,黑洞的质量为M,黑洞的最大可能半径为R,光子的速度(sd)为c根据牛顿定律 得:对银河系中的星体,设它的质量为m/,它也在绕黑洞旋转,因此 由解得:第二十七页,共40页。【探讨评价】通过上面的数据分析我们知道,黑洞是一种特殊的天体,它的质量、半径都很大,因此它对周围星体的引力特别大,任何物质(包括光子)都将被它吸入,这就是“黑洞”命名的缘由。黑洞是否真正存在(cnzi),其运动特点和规律到底怎么样,同学们可以上网查资料,充分考查研究。希望同学们将来成为真正的宇宙探秘科学家。我们要认真学习课本的阅读材料,能用中学物理知识分析解决科技中的问题。第二十八页,共40页。【案例10】宇宙(yzhu)膨胀问题在研究宇宙发展演变的理论中,有一种学说叫做“宇宙膨胀说”,这种学说认为万有引力常量G在缓慢地减小,根据这一理论,在很久很久以前,太阳系中地球的公转情况与现在相比较,公转半径如何(rh)变化?公转周期如何(rh)变化?公转线速度如何(rh)变化?要求写出必要的推理依据和推理过程。第二十九页,共40页。解析:这也是一道信息题,主要考察同学们运用万有引力定律推理分析的能力。所提供的信息就是“引力常量在缓慢地减小”。在漫长(mn chng)的宇宙演变过程中,由于“G”在减小,地球所受的引力在变化,故地球公转的半径、周期速度都在发生变化。即地球不再做匀速圆周运动。但由于G减小的非常缓慢,故在较短的时间内,可以认为地球仍做匀速圆周运动引力提供向心力。第三十页,共40页。设M为太阳的质量,m为地球的质量,r为地球公转的半径(bnjng),T为地球公转的周期,v为地球公转的速率。根据 得:G 地球做离心运动轨道半径r星球间距增大宇宙膨胀(png zhng)很久以前地球公转半径比现在要小。根据(gnj)得:G、rT很久以前地球公转周期比现在要小根据:知:知:G、rv很久以前地球公转的速率比现在要大第三十一页,共40页。根据(gnj):知:G、rv很久以前地球公转的速率比现在要大【探讨评价】本题(bnt)是根据信息推理论证题。既然要求写出推理依据以及推理过程,这就要求我们充分利用“引力提供向心加速度”的重要规律,了解信息,明确规律,搞清变量,严密推理。第三十二页,共40页。【案例11】月球(yuqi)开发问题科学探测表明,月球上至少存在氧、硅、铝、铁等丰富的矿产资源。设想人类开发月球,不断地月球上的矿藏搬运到地球(dqi)上,假定经过长时间开采以后,月球和地球(dqi)仍看做均匀球体,月球仍然在开采前的轨道运动,请问:地球(dqi)与月球的引力怎么变化?月球绕地球(dqi)运动的周期怎么变化?月球绕地球(dqi)运动的速率怎么变化?第三十三页,共40页。解析:本题主要考察数学在天文学上的应用。由万有引力定律 结合数学知识得:,当m=M时,积Mm最大。可见(kjin)M、m相差越大,积越小,而r一定,故F就越小由 得:G、r一定,M增大,T减小第三十四页,共40页。由 知:G、r一定,M增大,v增大 【探讨评价】这也是一道(ydo)信息题。了解题目信息,明确变量,充分利用数学上求极值的几种方法去思考问题,利用函数的思想去解决问题,这种方法十分重要。第三十五页,共40页。【案例12】“宇宙飞船”及能量(nngling)问题宇宙飞船要与正在轨道上运行的空间站对接。飞船为了追上轨道空间站,应采取什么(shn me)措施?飞船脱离原来的轨道返回大气层的过程中,重力势能如何变化?动能如何变化?机械能又如何变化?第三十六页,共40页。解析:本题(bnt)主要考察飞船运行过程中的能量问题。根据 知:在同一运行轨道上,宇宙飞船与轨道空间站的运行速率是相同的,它不可能追上轨道空间站。当飞船在较小的轨道上运行时满足:当飞船在较小的轨道上加速运动时,随着速度增大,飞船将做离心运动,运行轨道半径增大,逐渐靠近(kojn)外层轨道r2才能追上飞船。可见飞船为了追上轨道空间站,应该从较低的轨道上加速运行。第三十七页,共40页。飞船脱离原来的轨道返回大气层的过程中,需要制动减速,其运动的轨道半径(bnjng)逐渐减小。由于轨道变化比较慢,制动的阻力又在切线方向,阻力引起的速度的变化很小,所以仍然满足,可见,飞船的动能增加;由于飞船离地的高度逐渐降低(jingd),因此飞船的重力势能减小;由于飞船需要克服大气阻力和制动力做功,因此飞船的机械能减小。第三十八页,共40页。【探讨评价】宇宙飞船在空间轨道上运动,是靠地球的引力产生向心加速度维持的,轨道一定(ydng),则速率一定(ydng)。要想往外轨道运动,必须加速,使它做离心运动;要想往内轨道运动,必须减速,使它做向心运动。研究飞船的能量问题,既要从功的角度去考虑,又要从实际出发去研究,必须抓住矛盾的主要方面去分析。第三十九页,共40页。结束语万有引力在天文学上的运用还很多,这里不再一万有引力在天文学上的运用还很多,这里不再一一研究。不论什么问题,只要我们认真审题,明一研究。不论什么问题,只要我们认真审题,明确物体运动确物体运动(yndng)(yndng)的物理图景的物理图景,知道物体的状知道物体的状态参量态参量,搞清运用的物理规律,勇于探索,善于总搞清运用的物理规律,勇于探索,善于总结规律,就一定能学好高中物理。结规律,就一定能学好高中物理。第四十页,共40页。

    注意事项

    本文(万有引力定律应用的12种典型案例讲课教案.ppt)为本站会员(豆****)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开