2022年圆的知识点总结2 .pdf
图 4rRd图 5rRd圆得总结集合:圆:圆可以瞧作就是到定点得距离等于定长得点得集合;圆得外部:可以瞧作就是到定点得距离大于定长得点得集合;圆得内部:可以瞧作就是到定点得距离小于定长得点得集合轨迹:1、到定点得距离等于定长得点得轨迹就是:以定点为圆心,定长为半径得圆;2、到线段两端点距离相等得点得轨迹就是:线段得中垂线;3、到角两边距离相等得点得轨迹就是:角得平分线;4、到直线得距离相等得点得轨迹就是:平行于这条直线且到这条直线得距离等于定长得两条直线;5、到两条平行线距离相等得点得轨迹就是:平行于这两条平行线且到两条直线距离都相等得一条直线点与圆得位置关系:点在圆内dr 点 A 在圆外直线与圆得位置关系:直线与圆相离dr 无交点直线与圆相切d=r 有一个交点直线与圆相交dR+r 外切(图 2)有一个交点d=R+r 相交(图 3)有两个交点R-rdR+r 内切(图 4)有一个交点d=R-r 内含(图 5)无交点dr 文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1点在圆上d=r 点在圆内dr 相切d=r 相交dR+r 外切d=R+r 相交R-rdR+r 内切d=R-r 内含dR-r 五、正多边形与圆1、有关概念正多边形得中心、半径、中心角及其度数、边心距2、方法思路:构造等腰(等边)三角形、直角三角形,在三角形中求线、角、面积。六、圆得有关线得长与面积。1、圆得周长、弧长C=2r,l=2、圆得面积、扇形面积、圆锥得侧面积与全面积S圆=r2,S扇形=,或 S扇形=(即 S扇形=)S圆锥=3、求面积得方法直接法由面积公式直接得到间接法即:割补法(与差法)进行等量代换与 圆 有 关 得 计 算一、周长:设圆得周长为C,半径为r,扇形得弧长为l,扇形得圆心角为n、圆得周长:C R;扇形得弧长:。例题 1.(05 崇文练习一)某小区建有如图所示得绿地,图中 4 个半圆,邻近得两个半圆相切。两位老人同时出发,以相同得速度由A 处到 B 处散步,甲老人沿得线路行走,乙老人沿得线路行走,则下列结论正确得就是()(A)甲老人先到达B 处(B)乙老人先到达B 处(C)甲、乙两老人同时到达B 处(D)无法确定文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1例题 2.如图,ABC 就是正三角形,曲线 CDEF 叫做正三角形得“渐开线”,其中、得圆心依次按A、B、C 循环,将它们依次平滑相连接。如果 AB=1,试求曲线 CDEF 得长。例题 3.(06 芜湖)已知如图,线段 AB CD,CBE=600,且 AB=60cm,BC=40cm,CD=40cm,O 得半径为 10cm,从 A到 D 得表面很粗糙,求O 从 A 滚动到 D,圆心 O 所经过得距离。例题4.如图,一个等边三角形得边长与与它得一边相外切得圆得周长相等,当这个圆按箭头方向从某一位置沿等边三角形得三边作无滑动旋转直至回到原出发位置时,则这个圆共转了()圈。A 4 B 3 C 5 D 3、56、例题 5.(08 大兴二模)如图,一个人握着板子得一端,另一端放在圆柱上,某人沿水平方向推动板子带动圆柱向前滚动,假设滚动时圆柱与地面无滑动,板子与圆柱也没有滑动.已知板子上得点B(直线与圆柱得横截面得切点)与手握板子处得点C 间得距离 BC 得长为 L,当手握板子处得点C 随着圆柱得滚动运动到板子与圆柱横截面得切点时,人前进了 _.例题 6.(08 房山二模)如图,ACB,半径为 2 得0 切 BC 于点 C,若将 O 在 CB 上向右滚动,则当滚动到 O 与 CA 也相切时,圆心 O 移动得水平距离为、二、面积:设圆得面积为S,半径为r,扇形得面积为,弧长为l、圆得面积:扇形得面积:弓形面积:例题 1.(05 丰台练习二)如图,ABC 内接于 O,BD 就是 O 得直径,如果 A120,CD2,则扇形 OBAC 得面积就是 _。例题 2.(江西省)如图,A、B、C 两不相交,且半径半径都就是0、5cm、图中得三个扇形(即三个阴影部分)得面积之与为()A cm2B cm2C cm2D cm2例题 3.(08 大兴)北京市一居民小区为了迎接2008 年奥运会,计划将小区内得一块平行四边形ABCD 场地进行绿化,如图阴影部分为绿化地,以 A、B、C、D 为圆心且半径均为得四个扇形得半径等于图中O 得直径,已测得,则绿化地得面积为()A、18 B、36 C、D、例题 4.如图,O 得半径为 20,B、C 为半圆得两个三等分点,A 为半圆得直径得一个端点,求阴影部分得面积。例题 5.(08 房山)如图 1 就是一种边长为60cm 得正方形地砖图案,其图案设计就是:三等分 AD(AB=BC=CD)以点 A 为圆心,以 AB 长为半径画弧,交 AD 于 B、交 AG 于 E;再分别以 B、E 为圆心,AB 长为半径画弧,交 AD 于 C、交 AG 于 F 两弧交于 H;用同样得方法作出右上角得三段弧.图 2 就是用图 1 所示得四块地砖铺在一起拼成得大地砖,则图 2 中得阴影部分得面积就是_cm2(结果保留).例题 6、(08 西城)如图,在中,AB=AC=2,若以 AB 为直径得圆交BC 于点 D,则阴影部分得面积就是、例题 7、(08 朝阳)已知:如图,三个半径均为1 m 得铁管叠放在一起,两两相外切,切点分别为C、D、E,直线 MN(地面)分别与 O2、O3相切于点 A、B.(1)求图中阴影部分得面积;(2)请您直接写出图中最上面得铁管(O1)得最低点 P 到地面 MN 得距离就是 _m.例题 8.(08 海淀)如图,一种底面直径为8 厘米,高 15 厘米得茶叶罐,现要设计一种可以放三罐得包装盒,请您估算包装用得材料为多少(边缝忽略不计)。三、侧面展开图:圆柱侧面展开图就是形,它得长就是底面得,高就是这个圆柱得;圆锥侧面展开图就是形,它得半径就是这个圆锥得,它得弧长就是这个圆锥得底面得。例题 1.(05 丰台)圆柱得高为 6cm,它得底面半径为4cm,则这个圆柱得侧面积就是()A、B、C、D、例题 2.(05 丰台)如果圆锥得底面半径为4cm,高为 3cm,那么它得侧面积就是()A、B、C、D、例题 3.(05海淀)如图圆锥两条母线得夹角为,高为 12cm,则圆锥侧面积为_,底面积为_。例题 4.(05 朝阳)如果圆柱得母线长为5cm,底面半径为2cm,那么这个圆柱得侧面积就是()A、B、C、D、例题 5、如果一个圆锥得轴截面就是等边三角形,它得边长为 4cm,那么它得全面积就是()A、8cm2B、10 cm2C、12cm2D、9cm2四、正多边形计算得解题思路:正多边形等腰三角形直角三角形。可将正多边形得中心与一边组成等腰三角形,再用解直角三角形得知识进行求解。例题 1.(05 朝阳)正 n 边形得一个内角就是,则边数 n 就是()A、4 B、6 C、8 D、10 例题 2.如图,要把边长为6 得正三角形纸板剪去三个三角形,得到正六边形,它得边长为 _。文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1例题 3.如图扇形得圆心角为直角,正方形 OCDE 内接于扇形,点 C、D、E 分别在 OA、OB、上,过点 A 作 AFED,交 ED 得延长线于点F,垂足为 F。若正方形得边长为1,则阴影部分得面积为_。(福建福州)文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1文档编码:CE7P2Z2H6P8 HN10Z7S9M10J4 ZT1B10Y7P7X1