2022年平面向量的数量积及应用 .pdf
学习好资料欢迎下载富县高级中学集体备课教案年级:高三科目:数学授课人:课题第三节?平面向量的数量积及应用第 1 课时三维目标(1)考查两个向量的数量积的求法;(2)利用两个向量的数量积求向量的夹角、向量的模;(3)利用两个向量的数量积证明两个向量垂直重点(1)理解数量积的意义,掌握求数量积的各种方法;(2)理解数量积的运算性质。中心发言人难点利用数量积解决向量的几何问题.教具多媒体课 型复习课课时安排2 课时教法引导点拨学 法合作探究个人主页教学过程一知识梳理1平面向量的数量积若两个 _向量a与b,它们的夹角为,则数量 _叫做a与b的数量积(或内积),记作_.规定:零向量与任一向量的数量积为_.两个非零向量a与b垂直的充要条件是_,两个非 零 向 量a与b平 行 的 充 要 条 件 是_.2平面向量数量积的几何意义数量积ab等于a的长度|a|与b在a方向上的投影_的乘积3平面向量数量积的重要性质(1)eaae_;(2)非零向量a,b,ab?_;(3)当a与b同向时,ab_;当a与b反向时,ab _,aa_,|a|_;(4)cos _;(5)|ab|_|a|b|.4平面向量数量积满足的运算律(1)ab_(交换律);(2)(a)b(ab)_(为实数);(3)(ab)c_.学习好资料欢迎下载5平面向量数量积有关性质的坐标表示设向量a(x1,y1),b(x2,y2),则ab_,由此得到:(1)若a(x,y),则|a|2_,或|a|_.(2)设A(x1,y1),B(x2,y2),则A,B两点间的距离|AB|AB|_.(3)设a(x1,y1),b(x2,y2),则ab?_.二学情自测1下列四个命题中真命题的个数为()若ab0,则ab;若abbc,且b0,则ac;(ab)ca(bc);(ab)2a2b2.A4 个B2 个C0 个D3 个2在ABC中,AB3,AC2,BC10,则ABAC()A32 B 23 C.23 D.323已知平面向量a(1,3),b(4,2),ab与a垂直,则()A 1 B 1 C 2 D 2 4已知a(2,3),b(4,7),则a在b上的投影为()A.13 B.135 C.655 D.65 5已知|a|1,|b|6,a(ba)2,则向量a与b的夹角是()A.6 B.4 C.3 D.2三典例精析1 平面向量数量积的运算【例 1】(1)在 Rt ABC 中,C90,AC4,则AB AC等于()A16B 8C8D16(2)若向量 a(1,1),b(2,5),c(3,x),满足条件(8ab)c30,则 x 等于()A6 B5 C4 D3 思维启迪:(1)由于 C90,因此选向量CA,CB为基底文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1学习好资料欢迎下载(2)先算出8ab,再由向量的数量积列出方程,从而求出 x.2.向量的夹角与向量的模【例 2】已知|a|4,|b|3,(2a3b)(2ab)61,(1)求 a 与 b的夹角 ;(2)求|a b|;(3)若 ABa,BCb,求 ABC 的面积思维启迪:运用数量积的定义和|a|a a.3.向量数量积的综合应用【例3】已 知a (cos,sin),b(cos,sin)(0 )(1)求证:ab与 ab互相垂直;(2)若 kab 与 akb 的模相等,求 .(其中 k 为非零实数)思维启迪:(1)证明两向量互相垂直,转化为计算这两个向量的数量积问题,数量积为零即得证(2)由模相等,列等式、化简4.平面向量与三角函数的交汇【例 4】已知在锐角 ABC 中,两向量 p(22sinA,cosA sinA),q(sinAcosA,1sinA),且 p 与 q是共线向量(1)求 A 的大小;(2)求函数 y2sin2BcosC3B2取最大值时,B 的大小四易错警示(平面向量与解三角形答题模板)【示例】(12 分)已知角 A,B,C 是ABC 的内角,a,b,c 分别是其对边长,向量m2 3sinA2,cos2A2,n cosA2,2,mn.(1)求角 A 的大小;(2)若 a2,cosB33,求 b 的长教 后反 思文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1学习好资料欢迎下载审核人签字:年月日文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1文档编码:CC10L8D8G10T10 HR10E3Y4R8E6 ZC9N5Q2R5Q1