2022年新华教育高中部数学同步人教A版必修四第二章平面向量-平面向量的数量积学习过程 .pdf
平面向量的数量积学习过程知识点一:平面向量的数量积(1)定义:已知两个非零向量ar与br,它们的夹角是,则数量|ar|br|cosar与br的数量积,记作arbr,即有arbr=|ar|br|cos()(2).并规定0r与任何向量的数量积为0.(3)投影:“投影”的概念:作图定义:|br|cosbr在ar方向上的投影.值;0;=0|br|;=180|br|.(4)两个向量的数量积与向量同实数积的区别两个向量的数量积是一个实数,不是向量,符号由 cos.当 090时,arbr0;当=90时,arbr=0;当 90 180时,arbr0.两个向量的数量积称为内积,写成arbr;.符号“”在向量运算中不是乘号,既不能省略,也不能用“”代替.在实数中,若a0,且 a b=0,则 b=0;但是在数量积中,若0arr,且arbr=0,不能推出0brr.因为其中cos0.(5)平面向量的数量积的几何意义:数量积arbr等于ar的长度与br在ar方向上投影|br|cos.注意:br在ar方向上投影可以写成a bar rr(6)平面向量的数量积的性质:设ar、br为两个非零向量,arbrarbr=0 当ar与br同向时,arbr=|ar|br|;当ar与br反向时,arbr=|ar|br|.特别的arar=|ar|2或aa arr ra ba br rr rcos=a ba br rr r,利用这一关系,可求两个向量的夹角。(7)平面向量数量积的运算律交换律:a bb ar rr r数乘结合律:(ar)br=(arbr)=ar(br)分配律:(ar+br)cr=arcr+brcr说明:一般地,(arbr)crar(brcr)arcrbrcr,cr0arbr有如下常用性质:22aarr(arbr)(crdu r)arcrardu rbrcrbrdu r222)2abaa bbrrrr rr(知识点二:平面两向量数量积的坐标表示(1)已知两个非零向量1122(,),(,)ax ybxyrr,则arbr2121yyxx,即两个向量的数量积等于它们对应坐标的乘积的和。(2)向量模的坐标表示设(,)ax yr,则22222,axyaxyrr即.如果表示向量ar的有向线段的起点和终点的坐标分别为),(11yx、),(22yx,那么2221212121(,),()()axx yyaxxyyrr(3)注意:若A),(11yx、B),(22yx,则文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V82221212121(,),()()ABxx yyABxxyyuu u ruu u r,所以ABuu u r的实质是A,B的两点的距离或是线段的长度,这也是模的几何意义。(4)两个向量垂直的条件设1122(,),(,)ax ybxyrr,则arbr12120 x xy y(5)两向量夹角的余弦公式(6)设 两 个 非 零 向 量1122(,),(,)ax ybxyrr,是ar与br的 夹 角,则 有cos=a ba br rr r=121222221122x xy yxyxy学习结论(1)两个向量的数量积是一个实数,不是向量,符号由cos.(2)数学中涉及向量中点、夹角、距离、平行与垂直问题,均可转化为向量问题。(3)两向量垂直的充要条件有时与向量共线条件结合在一起,要注意两者的联系。典型例题例 1 已知ar与br都是非零向量,且ar+3br与 7ar5br垂直,ar4br与 7ar2br垂直,求ar与br的夹角.解:由(ar+3br)(7ar5br)=0 2271615aa bbrr rr=0(ar4br)(7ar2br)=0 2273080aa bbrr rr两式相减:22a bbr rr代入或得:22abrr设ar、brcos=a ba br rr r=12,又因为=60例 2 求证:平行四边形两条对角线平方和等于四条边的平方和.解析:如图:平行四边形ABCD 中,DCAB,BCAD,AC=ADAB|AC|2=ADABADABADAB2|222而BD=ADAB,文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V82BDuu u r|=ADABADABADAB2|22222ACBDuu u ruu u r=2222ADAB=2222|ADDCBCAB例 3.如图,以原点和A(5,2)为顶点作等腰直角OAB,使B=90,求点 B 和向量AB的坐标.答案:B 点坐标)23,27(或)27,23(;AB=)27,23(或)23,27(解析:设 B 点坐标(x,y),则OB=(x,y),AB=(x 5,y 2)OBABx(x5)+y(y2)=0 即:x2+y2 5x 2y=0 又|OB|=|AB|x2+y2=(x5)2+(y2)2 即:10 x+4y=29 由2723232729410025221122yxyxyxyxyx或B 点坐标)23,27(或)27,23(;AB=)27,23(或)23,27(例 4.在 ABC 中,AB=(2,3),AC=(1,k),且 ABC 的一个内角为直角,求 k 值.答案:k=23或 k=311或 k=2133解析:当 A=90 时,AB AC=0,21+3k=0 k=23当 B=90 时,AB BC=0,BC=ACAB=(1 2,k 3)=(1,k 3)2(1)+3(k 3)=0 k=311当 C=90 时,AC BC=0,1+k(k3)=0 k=2133文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8文档编码:CW8O7B10A9K4 HB5F3A6O1T4 ZE6H8T2T3V8