2022年惠州一中珠海一中东莞中学中山纪念中学深圳实验中学广州二中2012届高三数学第二次联考理 .pdf
20XX届六校 11 月联考试题理科数学一、选择题(本大题8 小题,每小题5 分,共 40 分)1已知集合,1|2RxxyyM,2|2xyxN,则NM()A.),1 B.2,1 C.),2 D.2已知命题“012,2axxxR”是真命题,则实数a的取值范围是()A)1,(B),1(C),1()1,(D(1,1)3如图,正方形ABCD的顶点2(0,)2A,2(,0)2B,顶点CD、位于第一象限,直线:(02)lxtt将正方形ABCD分成两部分,记位于直线l左侧阴影部分的面积为()f t,则函数sf t的图象大致是()4已知120201,cos 15sin 15Mx dxN,则()A.MN B.MN C.MN D.以上都有可能5右图是函数sin()()yAxxR在区间5,66上的图象。为了得到这个函数的图象,只要将sin()yx xR的图象上所有的点()A向左平移3个单位长度,再把所得各点的横坐标缩短到原来的12倍,纵坐标不变B向左平移3个单位长度,再把所得各点的横坐标伸长到原来的2 倍,纵坐标不变C向左平移6个单位长度,再把所得各点的横坐标缩短到原来的12倍,纵坐标不变D向左平移6个单位长度,再把所得各点的横坐标伸长到原来的2 倍,纵坐标不变6.若函数1(),(2)2f xxxx在xn处有最小值,则n()A D B C x y O l A B C D 3 题图5 题图A12 B.13 C.4 D.3 7设函数fx是定义在R上的奇函数,且当0 x时,fx单调递减,若数列na是等差数列,且30a,则12345fafafaf afa的值()A.恒为正数B.恒为负数C.恒为 0 D.可正可负8.若函数21,xfxabc且fafcfb,则下列结论中,必成立的是()A0,0,0abc B0,0,0abcC22ac D222ac二、填空题(本大题6 小题,每小题5 分,共 30 分)9、若3cos5,且3,2,则tan;10已知,0,0 xyxy xy则xy的最小值是;11定义运算法则如下:1112322,lglgabababab;若1824125M1,225N,则 M N;12设()f x是周期为2 的奇函数,当01x时,()f x2(1)xx,则5()2f13.设曲线1()nyxn*N在点(1,1)处的切线与x轴的交点的横坐标为nx,则201212012220122011logloglogxxx的值为;14、如图放置的边长为1 的正方形PABC沿x轴滚动。设顶点,P x y的轨迹方程是()yf x,则()yfx在其两个相邻零点间的图像与x轴所围区域的面积为。三、解答题(本大题6 小题,共80 分)15(本小题满分14 分 已知函数).4cos()4sin(22sin3)(xxxxf(I)化简)(,)(xfxf并求的表达式的最小正周期;(II)当0,()2xfx时 求函数的值域。C B P A 14 题图文档编码:CE2D10U9C8B3 HJ2Q8T10Q2B1 ZH7Q4H6R7T8文档编码:CE2D10U9C8B3 HJ2Q8T10Q2B1 ZH7Q4H6R7T8文档编码:CE2D10U9C8B3 HJ2Q8T10Q2B1 ZH7Q4H6R7T8文档编码:CE2D10U9C8B3 HJ2Q8T10Q2B1 ZH7Q4H6R7T8文档编码:CE2D10U9C8B3 HJ2Q8T10Q2B1 ZH7Q4H6R7T8文档编码:CE2D10U9C8B3 HJ2Q8T10Q2B1 ZH7Q4H6R7T8文档编码:CE2D10U9C8B3 HJ2Q8T10Q2B1 ZH7Q4H6R7T8文档编码:CE2D10U9C8B3 HJ2Q8T10Q2B1 ZH7Q4H6R7T8文档编码:CE2D10U9C8B3 HJ2Q8T10Q2B1 ZH7Q4H6R7T8文档编码:CE2D10U9C8B3 HJ2Q8T10Q2B1 ZH7Q4H6R7T8文档编码:CE2D10U9C8B3 HJ2Q8T10Q2B1 ZH7Q4H6R7T8文档编码:CE2D10U9C8B3 HJ2Q8T10Q2B1 ZH7Q4H6R7T8文档编码:CE2D10U9C8B3 HJ2Q8T10Q2B1 ZH7Q4H6R7T8文档编码:CE2D10U9C8B3 HJ2Q8T10Q2B1 ZH7Q4H6R7T8文档编码:CE2D10U9C8B3 HJ2Q8T10Q2B1 ZH7Q4H6R7T8文档编码:CE2D10U9C8B3 HJ2Q8T10Q2B1 ZH7Q4H6R7T8文档编码:CE2D10U9C8B3 HJ2Q8T10Q2B1 ZH7Q4H6R7T8文档编码:CE2D10U9C8B3 HJ2Q8T10Q2B1 ZH7Q4H6R7T8文档编码:CE2D10U9C8B3 HJ2Q8T10Q2B1 ZH7Q4H6R7T8文档编码:CE2D10U9C8B3 HJ2Q8T10Q2B1 ZH7Q4H6R7T8文档编码:CE2D10U9C8B3 HJ2Q8T10Q2B1 ZH7Q4H6R7T8文档编码:CE2D10U9C8B3 HJ2Q8T10Q2B1 ZH7Q4H6R7T8文档编码:CE2D10U9C8B3 HJ2Q8T10Q2B1 ZH7Q4H6R7T8文档编码:CE2D10U9C8B3 HJ2Q8T10Q2B1 ZH7Q4H6R7T8文档编码:CE2D10U9C8B3 HJ2Q8T10Q2B1 ZH7Q4H6R7T8文档编码:CE2D10U9C8B3 HJ2Q8T10Q2B1 ZH7Q4H6R7T8文档编码:CE2D10U9C8B3 HJ2Q8T10Q2B1 ZH7Q4H6R7T8文档编码:CE2D10U9C8B3 HJ2Q8T10Q2B1 ZH7Q4H6R7T8文档编码:CE2D10U9C8B3 HJ2Q8T10Q2B1 ZH7Q4H6R7T8文档编码:CE2D10U9C8B3 HJ2Q8T10Q2B1 ZH7Q4H6R7T8文档编码:CE2D10U9C8B3 HJ2Q8T10Q2B1 ZH7Q4H6R7T8文档编码:CE2D10U9C8B3 HJ2Q8T10Q2B1 ZH7Q4H6R7T8文档编码:CE2D10U9C8B3 HJ2Q8T10Q2B1 ZH7Q4H6R7T8文档编码:CE2D10U9C8B3 HJ2Q8T10Q2B1 ZH7Q4H6R7T8文档编码:CE2D10U9C8B3 HJ2Q8T10Q2B1 ZH7Q4H6R7T8文档编码:CE2D10U9C8B3 HJ2Q8T10Q2B1 ZH7Q4H6R7T8文档编码:CE2D10U9C8B3 HJ2Q8T10Q2B1 ZH7Q4H6R7T8文档编码:CE2D10U9C8B3 HJ2Q8T10Q2B1 ZH7Q4H6R7T8文档编码:CE2D10U9C8B3 HJ2Q8T10Q2B1 ZH7Q4H6R7T8文档编码:CE2D10U9C8B3 HJ2Q8T10Q2B1 ZH7Q4H6R7T8文档编码:CE2D10U9C8B3 HJ2Q8T10Q2B1 ZH7Q4H6R7T8文档编码:CE2D10U9C8B3 HJ2Q8T10Q2B1 ZH7Q4H6R7T8文档编码:CE2D10U9C8B3 HJ2Q8T10Q2B1 ZH7Q4H6R7T8文档编码:CE2D10U9C8B3 HJ2Q8T10Q2B1 ZH7Q4H6R7T8文档编码:CE2D10U9C8B3 HJ2Q8T10Q2B1 ZH7Q4H6R7T8文档编码:CE2D10U9C8B3 HJ2Q8T10Q2B1 ZH7Q4H6R7T8文档编码:CE2D10U9C8B3 HJ2Q8T10Q2B1 ZH7Q4H6R7T8文档编码:CE2D10U9C8B3 HJ2Q8T10Q2B1 ZH7Q4H6R7T816(本大题12 分)已知二次函数2(21)12fxxaxa(1)判断命题:“对于任意的aR(R为实数集),方程1)(xf必有实数根”的真假,并写出判断过程(2),若()yf x在区间)0,1(及)21,0(内各有一个零点求实数a 的范围17、(本小题满分12 分)如果直线12:220,:840lxylxy与x轴正半轴,y轴正半轴围成的四边形封闭区域(含边界)中的点,使函数0,0zabxy ab的最大值为 8,求ab的最小值18.(本小题满分14 分)等比数列na中,123,a aa分别是下表第一、二、三行中的某一个数,且123,a a a中的任何两个数不在下表的同一列.第一列第二列第三列第一行3 2 10 第二行6 4 14 第三行9 8 18()求数列na的通项公式;()若数列nb满足131(2)log()2nnban,记数列nb的前 n 项和为nS,证明34nS17 题图文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U1019、(本小题满分14 分)如图,已知曲线31:(0)Cyxx与曲线32:23(0)Cyxx x交于点,O A.直线(01)xtt与曲线12,C C分别相交于点,B D.()写出四边形ABOD的面积S与t的函数关系Sf t;()讨论f t的单调性,并求ft的最大值.20(本小题满分14 分)给定函数2()2(1)xf xx(1)试求函数fx的单调减区间;(2)已知各项均为负的数列na满足,14()1nnSfa求证:1111lnnnnana;(3)设1nnba,nT为数列nb的前n项和,求证:201220111ln 2012TT。六校 11 月联考试题理科数学参考答案一、选择题(本大题8 小题,每小题5 分,共 40 分)19 题图文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U101已知集合,1|2RxxyyM,2|2xyxN,则NM(B )A.),1 B.2,1 C.),2 D.2已知命题“012,2axxxR”是真命题,则实数a的取值范围是(C )A)1,(B),1(C),1()1,(D(1,1)3如图,正方形ABCD的顶点2(0,)2A,2(,0)2B,顶点CD、位于第一象限,直线:(02)lxtt将正方形ABCD分成两部分,记位于直线l左侧阴影部分的面积为()f t,则函数sf t的图象大致是(C )4已知120201,cos 15sin 15Mx dxN,则(B )A.MN B.MN C.MN D.以上都有可能5右图是函数sin()()yAxxR在区间5,66上的图象。为了得到这个函数的图象,只要将sin()yx xR的图象上所有的点(A )A向左平移3个单位长度,再把所得各点的横坐标缩短到原来的12倍,纵坐标不变B向左平移3个单位长度,再把所得各点的横坐标伸长到原来的2 倍,纵坐标不变C向左平移6个单位长度,再把所得各点的横坐标缩短到原来的12倍,纵坐标不变D向左平移6个单位长度,再把所得各点的横坐标伸长到原来的2 倍,纵坐标不变6.若函数1(),(2)2f xxxx在xn处有最小值,则n(D )A12 B.13 C.4 D.3 7设函数fx是定义在R上的奇函数,且当0 x时,fx单调递减,若数列na是等差数列,且30a,则12345fafaf afaf a的值(A )A D B C x y O l 5 题图A B C D 3 题图文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10A.恒为正数B.恒为负数C.恒为 0 D.可正可负8.已知函数21,xfxabc且f af cf b,则下列结论中,必成立的是(D)A0,0,0abc B0,0,0abcC22ac D222ac二、填空题(本大题6 小题,每小题5 分,共 30 分)9、若3cos5,且3,2,则tan43 .10已知,0,0 xyxy xy则xy的最小值是 4 。11定义运算法则如下:1112322,lglgabababab;若1824125M1,225N,则 M N 5 12设()f x是周期为2 的奇函数,当01x时,()f x2(1)xx,则5()2f1213.设曲线1()nyxn*N在点(1,1)处的切线与x轴的交点的横坐标为nx,则201212012220122011logloglogxxx的值为1 14、如图放置的边长为1 的正方形PABC沿x轴滚动。设顶点,P x y的轨迹方程是()yf x,则()yfx在其两个相邻零点间的图像与x轴所围区域的面积为1。三、解答题(本大题6 小题,共80 分)15(本小题满分14 分 已知函数).4cos()4sin(22sin3)(xxxxf(I)化简)(,)(xfxf并求的表达式的最小正周期;(II)当0,()2xfx时 求函数的值域。解:(I))22sin(2sin3)(xxxf3 分xx2cos2sin34 分).62sin(2x6 分故.)(的最小正周期为xf 8 分C B P A 14 题图文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10(II)当,67,662,2,0 xx时10 分故,1,21)62sin(x 12 分故函数)(xf的值域为 1,2。14 分16(本大题12 分)已知二次函数2(21)12fxxaxa(1)判断命题:“对于任意的aR(R为实数集),方程1)(xf必有实数根”的真假,并写出判断过程(2)若()yf x在区间)0,1(及)21,0(内各有一个零点求实数a 的范围解:(1)“对于任意的aR(R 为实数集),方程1)(xf必有实数根”是真命题;(3分)依题意:1)(xf有实根,即2(2a 1)2a=0 xx有实根22(21)8(21)0aaa对于任意的aR(R为实数集)恒成立即2(2a 1)2a=0 xx必有实根,从而1)(xf必有实根(6 分)(2)依题意:要使()yfx在区间)0,1(及)21,0(内各有一个零点只须(1)0(0)01()02fff(9 分)即340120304aaa(10 分)解得:43a21(多带一个等号扣1 分)(12分)17、(本小题满分12 分)如果直线12:220,:840lxylxy与x轴正半轴,y轴正半轴围成的四边形封闭区域(含边界)中的点,使函数0,0zabxy ab的最大值为8,求ab的最小值17 题图文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5L9H8 HU4K10H10I8R7 ZH1Z1X8Z8U10文档编码:CG8J4L5