欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2022年高一数学必修一第二章知识点总结 2.docx

    • 资源ID:60244111       资源大小:142.63KB        全文页数:5页
    • 资源格式: DOCX        下载积分:4.3金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要4.3金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2022年高一数学必修一第二章知识点总结 2.docx

    精品_精品资料_可编辑资料 - - - 欢迎下载精品_精品资料_( 1)函数的单调性定义及判定方法函数的性 质1.3 函数的基本性质. 1.3.1 .单调性与最大(小)值定义图象判定方法可编辑资料 - - - 欢迎下载精品_精品资料_可编辑资料 - - - 欢迎下载精品_精品资料_假如对于属于定义域I内某个区间上的任意两个自变量 的值 x1 、x2 , 当 x1 < x 2 时,都有 fx 1<fx2 , 那 么 就说fx在这个区间上是 增函数 y y=fXfx1 fx2 ( 1)利用定义( 2)利用已知函数的单调性( 3)利用函数图象 (在某个区间图可编辑资料 - - - 欢迎下载精品_精品资料_函数的单调性假如对于属于定义域I内某个区间上的任意两个自变量 的值 x 1、x2 ,当 x1 < x 2 时,都有 fx 1>fx2 , 那 么 就说ox1x2 xyy=fXfx 1fx2 象上升为增)( 4)利用复合函数( 1)利用定义( 2)利用已知函数的单调性( 3)利用函数图象 (在某个区间图可编辑资料 - - - 欢迎下载精品_精品资料_fx在这个区间上是 减函数 ox1x 2x象下降为减)( 4)利用复合函数可编辑资料 - - - 欢迎下载精品_精品资料_在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数可编辑资料 - - - 欢迎下载精品_精品资料_ 对 于 复 合 函 数yf g x , 令ug x , 如yf u为 增 ,ug x为 增 , 就可编辑资料 - - - 欢迎下载精品_精品资料_可编辑资料 - - - 欢迎下载精品_精品资料_yf g x 为增.如yf u 为减,ug x 为减,就yf g x 为增.如yf u 为可编辑资料 - - - 欢迎下载精品_精品资料_可编辑资料 - - - 欢迎下载精品_精品资料_增 , ug x为 减, 就yf g x为 减. 如yf u为减,ug x为增 ,就 y可编辑资料 - - - 欢迎下载精品_精品资料_yf g x 为减a可编辑资料 - - - 欢迎下载精品_精品资料_( 2)打“”函数f xxax0 的图象与性质可编辑资料 - - - 欢迎下载精品_精品资料_可编辑资料 - - - 欢迎下载精品_精品资料_f x分别在 ,a 、a, 上为增函数,分别在ox可编辑资料 - - - 欢迎下载精品_精品资料_可编辑资料 - - - 欢迎下载精品_精品资料_a,0、 0,a 上为减函数可编辑资料 - - - 欢迎下载精品_精品资料_( 3)最大(小)值定义可编辑资料 - - - 欢迎下载精品_精品资料_一般的,设函数yf x 的定义域为 I ,假如存在实数M 满意:( 1)可编辑资料 - - - 欢迎下载精品_精品资料_对于任意的 xI ,都有 f xM .可编辑资料 - - - 欢迎下载精品_精品资料_( 2 )存在 x0I ,使得f x0 M 那么,我们称M 是函数f x的最大值,记作可编辑资料 - - - 欢迎下载精品_精品资料_fmax xM 可编辑资料 - - - 欢迎下载精品_精品资料_一般的,设函数yf x 的定义域为 I ,假如存在实数 m 满意:( 1)对于任意的xI ,都有可编辑资料 - - - 欢迎下载精品_精品资料_可编辑资料 - - - 欢迎下载精品_精品资料_f xm .( 2)存在 x0I ,使得f x0 m 那么,我们称m是函数f x的最小值,记作可编辑资料 - - - 欢迎下载精品_精品资料_可编辑资料 - - - 欢迎下载精品_精品资料_fmax xm ( 4)函数的奇偶性定义及判定方法函数的性 质. 1.3.2 .奇偶性定义图象判定方法可编辑资料 - - - 欢迎下载精品_精品资料_可编辑资料 - - - 欢迎下载精品_精品资料_函数的奇偶性假如对于函数 fx定义域内任意一个x,都有 f x= fx,那么函数 fx叫做奇函数假如对于函数 fx定义域内任意一个 x,都有 f x=fx, 那么函数 fx叫做偶函数 ( 1)利用定义(要先判肯定义域是否关于原点对称)( 2)利用图象(图象关于原点对称)( 1)利用定义(要先判肯定义域是否关于原点对称)( 2)利用图象(图象关于 y 轴对称)可编辑资料 - - - 欢迎下载精品_精品资料_可编辑资料 - - - 欢迎下载精品_精品资料_如函数f x 为奇函数,且在 x0 处有定义,就f 00 可编辑资料 - - - 欢迎下载精品_精品资料_奇函数在 y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数补充学问函数的图象( 1)作图利用描点法作图:确定函数的定义域.化解函数解析式.争论函数的性质(奇偶性、单调性).画出函数的图象利用基本函数图象的变换作图:要精确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象可编辑资料 - - - 欢迎下载精品_精品资料_平移变换yf xyf xh 0,左移 h个单位h 0,右移 | h|个单位k 0,上移 k个单位k 0,下移 | k|个单位yf xhyf xk可编辑资料 - - - 欢迎下载精品_精品资料_伸缩变换yf x01,伸1,缩yf x可编辑资料 - - - 欢迎下载精品_精品资料_可编辑资料 - - - 欢迎下载精品_精品资料_yf x对称变换0 A 1,缩A 1,伸yAf x可编辑资料 - - - 欢迎下载精品_精品资料_可编辑资料 - - - 欢迎下载精品_精品资料_yf xx轴yf xyf xy轴yf x可编辑资料 - - - 欢迎下载精品_精品资料_可编辑资料 - - - 欢迎下载精品_精品资料_yf x原点yf xyf x直线yxyf1 x可编辑资料 - - - 欢迎下载精品_精品资料_可编辑资料 - - - 欢迎下载精品_精品资料_yf x去掉y轴左边图象保留y轴右边图象,并作其关于y轴对称图象yf | x |可编辑资料 - - - 欢迎下载精品_精品资料_可编辑资料 - - - 欢迎下载精品_精品资料_yf x( 2)识图保留 x轴上方图象将x轴下方图象翻折上去y| f x |可编辑资料 - - - 欢迎下载精品_精品资料_对于给定函数的图象,要能从图象的左右、上下分别范畴、变化趋势、对称性等方面争论函数的定义域、值域、单调性、奇偶性,留意图象与函数解析式中参数的关系( 3)用图函数图象形象的显示了函数的性质,为争论数量关系问题供应了“形”的直观性,它是探求解题途径, 获得问题结果的重要工具要重视数形结合解题的思想方法可编辑资料 - - - 欢迎下载

    注意事项

    本文(2022年高一数学必修一第二章知识点总结 2.docx)为本站会员(H****o)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开