2022年数列求通项方法总结 .pdf
求通项公式题型 1:等差、等比数列通项公式求解1.已知:等差数列 an中,a3+a4=15,a2a5=54,公差 d 0,求数列 an得通项公式an2.已知 为等差数列,且、(I)求 得通项公式;(II)设就是等比数列 得前 n 项与,若成等差数列,求 S4 3.设等差数列 得前项与为,公比就是正数得等比数列 得前项与为,已知得通项公式4.已知等差数列得公差不为零,且,成等比数列,求数列得通项公式5.已知等比数列中,求数列得通项公式题型 2:由与关系求通项公式利用 公式法 求数列得通项:例:设数列得前项与为,且满足,、求通项公式1.若数列得前n 项与 Sn23an13,则得通项公式an_ 2.已知数列得前项与,正项等比数列中,则()AB.C.D.3.已知为数列得前项与,求下列数列得通项公式(1)(2)4.数列得前项与为,、(1)求数列得通项;(2)求数列得前n 项与、5.已知数列得前项与满足:(为常数,()求得通项公式;()设,若数列为等比数列,求得值6.设各项为正数得数列得前与为,且满足、(1)求得值;(2)求数列得通项公式(3)证明:对一切正整数,有题型 3:迭代法求解迭加法:适用于数列得后一项与前一项之间满足得关系令111122112()+()().()nnkknnnnkaaaaaaaaaaa即可;迭乘法:适用于数列得后一项与前一项之间满足得关系、令即可例 1:已知数列中,求数列得通项公式例 2:数列中,则数列得通项()例 3:已知为数列得前项与,求数列得通项公式、例 4:已知数列满足,则得前项与=()A、B、C、D、练习:1.数列得首项为,为等差数列且,若则,则A.0 B.3 C.8 D.11 2.已知数列满足则得最小值为_ 3.已知数列中,求数列得通项公式4.已知数列满足,求得通项公式5.已知数列中,求得通项公式6.设数列满足,求数列得通项公式7.已知数列、满足,、(1)求数列得通项公式;(2)数列满足,求8.等差数列得前项与为,且(1)求得通项公式;(2)若数列满足得前项与、9.若数列得前项与为,对任意正整数都有,记.(1)求,得值;(2)求数列得通项公式;10.设公比大于零得等比数列得前项与为,且,数列得前项与为,满足,求数列、得通项公式题型 4:待定系数法(构造 等差、等比数列求通项);、)1.适用范围:若,则采用待定系数法求通项公式、2.解题思路:先利用待定系数法将递推公式转化为,再利用换元法转化为等比数列求解、文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5例 1:数列中,且,则()1.已知数列,求、2.已知数列中,求数列得通项公式3.已知数列满足a1=1,an+1=3an+1、(I)证明 an+就是等比数列,并求 an 得通项公式例 2:已知数列中,求证:数列就是等比数列,并求数列得通项公式、1.已知数列满足,且(n2 且 nN*),求证:数列就是等差数列,并求数列得通项公式2.已知数列得相邻两项就是关于得方程得两根,且,求证:数列就是等比数列,并求数列得通项公式3.数列 an 满足:a1=5,an+1an=2(an+1an)15,证明:数列 an+1 an就是一个等差数列,并求出数列 an得通项公式4.数列中,则得通项5.数列前项与,数列满足(),(1)求数列得通项公式;(2)求证:当时,数列为等比数列;(3)在题(2)得条件下,设数列得前项与为,若数列中只有最小,求得取值范围、题型 5:取倒数法:若,则两边取倒数可求通项公式例 1:已知数列满足,求1.数列中,则得通项2.已知数列得首项,求数列得通项公式课后小测1 已知数列得前项与为,且,.(1)求得值;(2)求数列得通项公式;(3)设,求数列得前项与.2【07 福建文】数列得前n 项与为,。(2)求数列得通项;(2)求数列得前n 项与。3 设数列满足。(1)求数列得通项公式;(2)令,求数列 得前 n 项与。4、已知数列 an满足,求an得通项公式5 已知数列满足,、(1)求,;(2)求证:数列就是等差数列,并求出得通项公式。文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5(3)若,求得前项与6、数列 得前 n 项与为,且满足,、(1)求得通项公式;(2)求与 Tn=、7 数列(1)求证:数列就是等比数列;(2)求数列 得通项公式;(3)若文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5文档编码:CJ9N3V4E4D4 HO8I4J9H9Z3 ZR6B10T2B4J5