2022年新人教A版高中数学4.1.2《用数学归纳法证明不等式》word教案 .pdf
名师精编优秀教案选修4-5 学案 4.1.2数学归纳法证明不等式(2)姓名学习目标:1.理解数学归纳法的定义、数学归纳法证明基本步骤;2.会运用数学归纳法证明不等式重点:应用数学归纳法证明不等式.?知识情景:关于正整数n的命题(相当于多米诺骨牌),我们可以采用下面方法来证明其正确性:10.验证 n 取时命题(即nn时命题成立)(归纳奠基);20.假设当时命题成立,证明当n=k1 时命题(归纳递推).30.由 10、20知,对于一切 nn的自然数 n 命题!(结论)要诀:递推基础,归纳假设,结论写明.数学归纳法的应用:例 1.求证:23mem,其中1m,且mN例 2 已知数列na的各项为正,且111,(4),2nnnaaaanN.(1)证明12,nnaanN;(2)求数列na的通项公式na.名师精编优秀教案例 3(06 湖南)已知函数()sinf xxx,数列na满足:1101,(),1,2,3,nnaaf an证明:()101nnaa;()3116nnaa.文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10名师精编优秀教案例 4(09 山东)等比数列na的前 n 项和为nS,已知对任意的nN,点(,)nn S均在函数(0 xybr b且1,bb r均为常数)的图像上.(1)求 r 的值;(11)当 b=2 时,记22(l og1)()nnbanN证明:对任意的nN,不等式1212111 1nnbbbnbbb成立选修4-5练习 4.1.2数学归纳法证明不等式(2)姓名1、正数 a、b、c 成等差数列,当 n1,nN*且 a、b、c 互不相等时,试证明:an+cn2bn.文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10名师精编优秀教案2、正数 a、b、c 成等比数列,当 n1,nN*且 a、b、c 互不相等时,试证明:an+cn2bn.3、若 n 为大于 1 的自然数,求证:1111312224nnn.4、(05 辽宁)已知函数3()(1)1xf xxx,设数列na满足111,()nnaaf a,nb满足*12|3|,()nnnnbaSbbbnN()用数学归纳法证明1(31)2nnnb;()证明23.3nS.文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10名师精编优秀教案5、(05 湖北)已知不等式nnn其中,log21131212为大于 2 的整数,log2n表示不超过n2log的最大整数.设数列na的各项为正,且满足,4,3,2,),0(111nannaabbannn证明:,5,4,3,log222nnbban6、(09广 东)已知曲线22:20(1,2,)nCxnxyn从点(1,0)P向曲线nC引斜率文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10名师精编优秀教案(0)nnkk的切线nl,切点为(,)nnnP xy(1)求数列nnxy与的通项公式;(2)证明:1352112 sin1nnnnnxxxxxxxy.参考答案:1.关于正整数n的命题(相当于多米诺骨牌),我们可以采用下面方法来证明其正确性:10.验证 n 取第一个值时命题成立(即nn时命题成立)(归纳奠基);20.假设当 n=k时命题成立,证明当n=k1 时命题也成立(归纳递推).30.由 10、20知,对于一切 nn的自然数 n 命题都成立!(结论)要诀:递推基础 不可少,归纳假设 要用到,结论写明 莫忘掉.例 1.求证:23mem,其中1m,且mN分析:此题是20XX 年广东高考数学试卷第21 题的适当变形,有两种证法证法一:用数学归纳法证明文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10名师精编优秀教案(1)当 m=2 时,44232e,不等式成立(2)假设*(2,)mk kkN时,有23kek,则2(1)22236kkeeek ek,2k,63(1)330kkk,即63(1)kk从而2(1)63(1)kekk,即1mk时,亦有23mem由(1)和(2)知,对1,mmN都成立证法二:作差、放缩,然后利用二项展开式和放缩法证明220122223(11)332(21)123(1211)21230mmmmmemmCCCmmmmmmmmmm当1m,且mN时,23mem例 2(20XX 年江西第21 题第(1)小题,本小题满分12 分)已知数列na,:的各项都是正数且满足0111,(4),.2nnnaaaanN(1)证明;,21Nnaann(2)求数列na的通项公式an.分析:近年来高考对于数学归纳法的考查,加强了数列推理能力的考查。对数列进行了考查,和数学归纳法一起,成为压轴题。解:(1)方法一用数学归纳法证明:1 当 n=1 时,,23)4(21,10010aaaa210aa,命题正确.2 假设 n=k 时有.21kkaa则111111,(4)(4)22kkkkkknkaaaaaa时11111112()()()()(4).22kkkkkkkkkkaaaaaaaaaa而1110,40,0.kkkkkkaaaaaa又2111(4)4(2)2.22kkkkaaaa1kn时命题也正确.文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10名师精编优秀教案由 1、2 知,对一切nN 时有.21nnaa方法二:用数学归纳法证明:1 当 n=1 时,,23)4(21,10010aaaa2010aa;2 假设 n=k 时有21kkaa成立,令)4(21)(xxxf,)(xf在0,2上单调递增,所以由假设有:),2()()(1fafafkk),24(221)4(21)4(2111kkkkaaaa也即当 n=k+1 时21kkaa成立,所以对一切2,1kkaaNn有(2)下面来求数列的通项:,4)2(21)4(2121nnnnaaaa所以21)2()2(2nnaa2,nnba令则21222221 222121111111()()()222222nnnnnnnbbbbb又 bn=1,所以211(),2nnb21122()2nnnab即本题也可先求出第(2)问,即数列na的通项公式2112()2nna,然后利用函数211()2()2xfx的单调性和有界性,来证明第(1)问的不等式但若这样做,则无形当中加大了第(1)问的难度,显然不如用数学归纳法证明来得简捷例 3(06 年湖南卷.理.19 本小题满分14 分)已知函数()sinf xxx,数列 na 满足:1101,(),1,2,3,.nnaaf an证明:()101nnaa;()3116nnaa.证明:(I)先用数学归纳法证明01na,1,2,3,文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2C10文档编码:CW5C3K8U7O7 HP8I1N8V8O9 ZQ10H1F1X2