欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2022年整式的乘除知识点及题型复习 .pdf

    • 资源ID:60292833       资源大小:237.05KB        全文页数:11页
    • 资源格式: PDF        下载积分:4.3金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要4.3金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2022年整式的乘除知识点及题型复习 .pdf

    名师推荐精心整理学习必备VIP 个性化辅导教案(华宇名都18-1-3)学生学科数学教材版本北师大版教师胡清清年级七年级课时统计第()课时,共(2)课时课题整式的运算授课时间20XX 年7 月 6 日授课时段教学目标1、巩固幂的运算法则与整式的乘除;2、综合运用。重点、难点1、幂的运算;2、整式的乘除。考点及考试要求详见教学内容教学内容整式运算考点 1、幂的有关运算nmaa(m、n 都是正整数)nma)((m、n 都是正整数)nab)((n 是正整数)nmaa(a0,m、n 都是正整数,且 mn)0a(a0)名师推荐精心整理学习必备pa(a0,p 是正整数)幂的乘方法则:幂的乘方,底数不变,指数相乘。积的乘方法则:积的乘方等于把积的每一个因式分别乘方,再把所得的幂相乘。同底数幂相除,底数不变,指数相减。例:在下列运算中,计算正确的是()(A)326aaa(B)235()aa(C)824aaa(D)2224()aba b练习:1、103xx_.2、32101036aaaa=。3、23132=。4、322(3)=。5、下列运算中正确的是()A336xyx;B235()mm;C22122xx;D633()()aaa6、计算8pmnaaa的结果是()A、8mnpaB、8m n paC、8mp npaD、8mnpa7、下列计算中,正确的有()325aaa4222abababab322aaaa752aaa。A、B、C、D、8、在5x x7x yxy32x233x yy中结果为6x 的有()A、B、C、D、提高点 1:巧妙变化幂的底数、指数例:已知:23a,326b,求3102ab的值;点评:2a、532(2)bb中的5(2)b分别看作一个整体,通过整体变换进行求值,则有:3102ab31022ab352(2)(2)ab235(2)(2)ab23(2)(32)ab3236972;1、已知2ax,3bx,求23abx的值。文档编码:CB5F6A8V3Q7 HK4L2I1C7O1 ZV2Z10W5K5X8文档编码:CB5F6A8V3Q7 HK4L2I1C7O1 ZV2Z10W5K5X8文档编码:CB5F6A8V3Q7 HK4L2I1C7O1 ZV2Z10W5K5X8文档编码:CB5F6A8V3Q7 HK4L2I1C7O1 ZV2Z10W5K5X8文档编码:CB5F6A8V3Q7 HK4L2I1C7O1 ZV2Z10W5K5X8文档编码:CB5F6A8V3Q7 HK4L2I1C7O1 ZV2Z10W5K5X8文档编码:CB5F6A8V3Q7 HK4L2I1C7O1 ZV2Z10W5K5X8文档编码:CB5F6A8V3Q7 HK4L2I1C7O1 ZV2Z10W5K5X8文档编码:CB5F6A8V3Q7 HK4L2I1C7O1 ZV2Z10W5K5X8文档编码:CB5F6A8V3Q7 HK4L2I1C7O1 ZV2Z10W5K5X8文档编码:CB5F6A8V3Q7 HK4L2I1C7O1 ZV2Z10W5K5X8文档编码:CB5F6A8V3Q7 HK4L2I1C7O1 ZV2Z10W5K5X8文档编码:CB5F6A8V3Q7 HK4L2I1C7O1 ZV2Z10W5K5X8文档编码:CB5F6A8V3Q7 HK4L2I1C7O1 ZV2Z10W5K5X8文档编码:CB5F6A8V3Q7 HK4L2I1C7O1 ZV2Z10W5K5X8文档编码:CB5F6A8V3Q7 HK4L2I1C7O1 ZV2Z10W5K5X8文档编码:CB5F6A8V3Q7 HK4L2I1C7O1 ZV2Z10W5K5X8文档编码:CB5F6A8V3Q7 HK4L2I1C7O1 ZV2Z10W5K5X8文档编码:CB5F6A8V3Q7 HK4L2I1C7O1 ZV2Z10W5K5X8文档编码:CB5F6A8V3Q7 HK4L2I1C7O1 ZV2Z10W5K5X8文档编码:CB5F6A8V3Q7 HK4L2I1C7O1 ZV2Z10W5K5X8文档编码:CB5F6A8V3Q7 HK4L2I1C7O1 ZV2Z10W5K5X8文档编码:CB5F6A8V3Q7 HK4L2I1C7O1 ZV2Z10W5K5X8文档编码:CB5F6A8V3Q7 HK4L2I1C7O1 ZV2Z10W5K5X8文档编码:CB5F6A8V3Q7 HK4L2I1C7O1 ZV2Z10W5K5X8文档编码:CB5F6A8V3Q7 HK4L2I1C7O1 ZV2Z10W5K5X8文档编码:CB5F6A8V3Q7 HK4L2I1C7O1 ZV2Z10W5K5X8文档编码:CB5F6A8V3Q7 HK4L2I1C7O1 ZV2Z10W5K5X8文档编码:CB5F6A8V3Q7 HK4L2I1C7O1 ZV2Z10W5K5X8文档编码:CB5F6A8V3Q7 HK4L2I1C7O1 ZV2Z10W5K5X8文档编码:CB5F6A8V3Q7 HK4L2I1C7O1 ZV2Z10W5K5X8文档编码:CB5F6A8V3Q7 HK4L2I1C7O1 ZV2Z10W5K5X8文档编码:CB5F6A8V3Q7 HK4L2I1C7O1 ZV2Z10W5K5X8文档编码:CB5F6A8V3Q7 HK4L2I1C7O1 ZV2Z10W5K5X8文档编码:CB5F6A8V3Q7 HK4L2I1C7O1 ZV2Z10W5K5X8文档编码:CB5F6A8V3Q7 HK4L2I1C7O1 ZV2Z10W5K5X8文档编码:CB5F6A8V3Q7 HK4L2I1C7O1 ZV2Z10W5K5X8文档编码:CB5F6A8V3Q7 HK4L2I1C7O1 ZV2Z10W5K5X8文档编码:CB5F6A8V3Q7 HK4L2I1C7O1 ZV2Z10W5K5X8文档编码:CB5F6A8V3Q7 HK4L2I1C7O1 ZV2Z10W5K5X8文档编码:CB5F6A8V3Q7 HK4L2I1C7O1 ZV2Z10W5K5X8文档编码:CB5F6A8V3Q7 HK4L2I1C7O1 ZV2Z10W5K5X8文档编码:CB5F6A8V3Q7 HK4L2I1C7O1 ZV2Z10W5K5X8文档编码:CB5F6A8V3Q7 HK4L2I1C7O1 ZV2Z10W5K5X8文档编码:CB5F6A8V3Q7 HK4L2I1C7O1 ZV2Z10W5K5X8文档编码:CB5F6A8V3Q7 HK4L2I1C7O1 ZV2Z10W5K5X8文档编码:CB5F6A8V3Q7 HK4L2I1C7O1 ZV2Z10W5K5X8文档编码:CB5F6A8V3Q7 HK4L2I1C7O1 ZV2Z10W5K5X8名师推荐精心整理学习必备2、已知 36m,92n,求2413mn的值。3、若4ma,8na,则32mna_。4、若5320 xy,则531010 xy=_。5、若3129327mm,则m_。6、已知8mx,5nx,求m nx的值。7、已知102m,103n,则3210mn_提高点 2:同类项的概念例:若单项式 2am+2nbn-2m+2与 a5b7是同类项,求 nm的值【点评】考查同类项的概念,由同类项定义可得25,227mnnm解出即可;求出:3,1;nm所以:113;3mn练习:1、已知31323mxy与52114nx y的和是单项式,则53mn的值是 _.经典题目:1、已知整式210 xx,求322014xx的值。考点 2、整式的乘法运算例:计算:31(2)(1)4aa=解:)141()2(3aa1)2(41)2(3aaaaa2214.练习:8、若32261161xxxxxmxn,求m、n的值。9、已知5ab,3ab,则(1)(1)ab的值为().A1B3C1D310、代数式222235yz xzyxzzxxyz的值().A只与,x y有关B只与,y z有关文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9名师推荐精心整理学习必备C与,x y z都无关D与,x y z都有关11、计算:200820083.140.1258的结果是().考点 3、乘法公式平方差公式:baba完全平方公式:2ba,2ba例:计算:2312xxx分析:运用多项式的乘法法则以及乘法公式进行运算,然后合并同类项.解:2312xxx=2269(22)xxxxx=226922xxxxx=97x.例:已知:32ab,1ab,化简(2)(2)ab的结果是分析:本题主要考查多项式与多项式的乘法运算.首先按照法则进行计算,然后灵活变形,使其出现(ab)与ab,以便求值.解:(2)(2)ab=422baab=4)(2baab=242321.练习:1、(a+b1)(ab+1)=。2下列多项式的乘法中,可以用平方差公式计算的是()A(a+b)(b+a)B(a+b)(ab)C(13a+b)(b13a)D(a2b)(b2+a)3下列计算中,错误的有()(3a+4)(3a4)=9a24;(2a2b)(2a2+b)=4a2b2;(3x)(x+3)=x29;(x+y)(x+y)=(xy)(x+y)=x2y2A1个B2 个C3 个D4 个4若 x2y2=30,且 xy=5,则 x+y 的值是()A5 B6 C6 D5 5、已知2()16,4,abab求223ab与2()ab的值.6、试说明不论 x,y 取何值,代数式226415xyxy的值总是正数。7、若2(9)(3)(xx4)81x,则括号内应填入的代数式为().文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9名师推荐精心整理学习必备A3xB3xC3xD9x8、(a2b+3c)2(a+2b3c)2=。9、若M的值使得22421xxMx成立,则M的值为()A5 B4 C3 D2 10、已知0136422yxyx,yx、都是有理数,求yx的值。经典题目:11、已知22)(nbmabababa,求 m,n 的值。12、0132xx,求(1)221xx(2)441xx13、一个整式的完全平方等于291xQ(Q为单项式),请你至少写出四个Q所代表的单项式。考点 4、利用整式运算求代数式的值例:先化简,再求值:22()()()2ab ababa,其中133ab,分析:本题是一道综合计算题,主要在于乘法公式的应用.解:22()()()2ab ababa2222222abaabba2ab当3a,13b时,12233ab2.1、5232224xyxyxyxyx,其中2x,3y。2、若32261161xxxxxmxn,求m、n的值。3、当代数式532xx的值为 7 时,求代数式2932xx的值.4、已知2083xa,1883xb,1683xc,求:代数式bcacabcba222的值。5、已知2x时,代数式10835cxbxax,求当2x时,代数式835cxbxax的值。6、先化简再求值2(2)(2)(3)(39)x xxxxx,当41x时,求此代数式的值。7、化简求值:(1)(2x-y)13(2x-y)32(y-2x)23,其中(x-2)2+|y+1|=0.文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9名师推荐精心整理学习必备考点 5、整式的除法运算例:已知多项式432237xxaxxb 含有同式22xx,求ab的值。解:22xx是432237xxaxxb的因式,可设4322223722xxaxxbxxxmxn,化简整理得:43243223722422xxaxxbxmxmnxnm xn。根据相应系数相等,即23m5m4mna解得:1226ab。27nm3n12a2nb6b方法总结:运用待定系数法解题的一般步骤:a、根据多项式之间的次数关系,设出一个恒等式,其中含有几个待定系数。b、比例对应项的系数,列出方程组。c、解方程组,求出其待定函数的值。练习:1、已知一个多项式与单项式547x y的积为2577432212872x yx yyx y求这个多项式。2、已知一个多项式除以多项式243aa所得的商式是21a,余式是28a,求这个多项式。方法总结:乘法与除法互为逆运算。被除式=除式商式+余式3、已知多项式22331xaxx能被21x整除,且商式是31x,则a的值为()A、3aB、2aC、1aD、不能确定4、31121233nnnaaa练习:32322524xyxyxyxyx12、已知一个多项式与单项式314xy的积为63345313428x yx yxy,求这个多项式。6、若n为正整数,则1555nn()A、15nB、0 C、15nD、1文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9名师推荐精心整理学习必备7、已知32214369mna ba bb,则m、n的取值为()A、4,3mnB、4,1mnC、1,3mnD、2,3mn经典题目:8、已知多项式32xaxbxc能够被234xx整除。4ac的值。求22abc的值。若,a b c均为整数,且1ca,试确定,a b c的大小。考点 6、定义新运算例 8:在实数范围内定义运算“”,其法则为:22abab,求方程(43)24x的解分析:本题求解的关键是读懂新的运算法则,观察已知的等式22abab可知,在本题中“”定义的是平方差运算,即用“”前边的数的平方减去“”后边的数的平方.解:22abab,2222(43)(43)77xxxx22724x 225x5x练习:1、对于任意的两个实数对),(ba和),(dc,规定:当dbca,时,有),(ba),(dc;运算“”为:),(),(),(bdacdcba;运 算“”为:),(),(),(dbcadcba 设 p、q 都 是实 数,若)4,2(),()2,1(qp,则_),()2,1(qp2、现规定一种运算:*a babab,其中ab,为实数,则()*a bbab等于()A2abB2bbC2bD2ba考点 7、因式分解例(1)分解因式:29xyx(2)分解因式:a2b-2ab2+b3=_.解析:因式分解的一般步骤是:若多项式的各项有公因式,就先提公因式,然后观察剩下因式的特征,如果剩下的因式是二项式,则尝试运用平方差公式;如果剩下的因式是三项式,则尝试运用完全平方公式继续分解.文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:CL3E2Y1F6R5 HW1P2D8R8Y6 ZS1Z7W10U4J9文档编码:C

    注意事项

    本文(2022年整式的乘除知识点及题型复习 .pdf)为本站会员(Q****o)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开