欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2022年指数函数知识点总结3 .pdf

    • 资源ID:60295552       资源大小:213.53KB        全文页数:10页
    • 资源格式: PDF        下载积分:4.3金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要4.3金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2022年指数函数知识点总结3 .pdf

    指数函数(一)指数与指数幂的运算1根式的概念:一般地,如果axn,那么x叫做a的n次方根,其中n1,且nN*负数没有偶次方根;0 的任何次方根都是0,记作00n。当n是奇数时,aann,当n是偶数时,)0()0(|aaaaaann2分数指数幂正数的分数指数幂的意义,规定:)1,0(*nNnmaaanmnm)1,0(11*nNnmaaaanmnmnm0 的正分数指数幂等于0,0 的负分数指数幂没有意义3实数指数幂的运算性质(1)rasrraa),0(Rsra;(2)rssraa)(),0(Rsra;(3)srraaab)(),0(Rsra(二)指数函数及其性质1、指数函数的概念:一般地,函数)1,0(aaayx且叫做指数函数,其中x 是自变量,函数的定义域为R注意:指数函数的底数的取值范围,底数不能是负数、零和12、指数函数的图象和性质a1 0a1 654321-1-4-224601654321-1-4-224601定义域 R 定义域 R 值域 y0 值域 y0 在 R 上单调递增在R 上单调递减非 奇 非 偶函数非 奇 非 偶函数函 数 图 象都 过 定 点(0,1)函 数 图 象都 过 定 点(0,1)注意:利用函数的单调性,结合图象还可以看出:(1)在 a,b 上,)1a0a(a)x(fx且值 域 是)b(f),a(f 或)a(f),b(f(2)若0 x,则1)x(f;)x(f取遍所有正数当且仅当Rx;(3)对于指数函数)1a0a(a)x(fx且,总有a)1(f;指数函数例题解析【例 1】求下列函数的定义域与值域:(1)y3(2)y(3)y12 x213321xx解(1)定义域为xR且 x2值域 y0 且 y1(2)由 2x+21 0,得定义域 x|x 2,值域为 y0(3)由 33x-1 0,得定义域是 x|x 2,033x13,值域是 0y3练习:(1)412xy;(2)|2()3xy;(3)1241xxy;【例 2】指数函数yax,ybx,ycx,ydx的图像如图2 62 所示,则 a、b、c、d、1 之间的大小关系是 Aab1cd Bab1dc C b a1dc Dcd1ab 解 选(c),在 x 轴上任取一点(x,0),则得 b a1dc练习:指数函数满足不等式,则它们的图象是().文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9【例 3】比较大小:(1)2(2)0.6、的大小关系是:248163235894512()(3)4.54.1_3.73.6解(1)y221()x,函数,该函数在,上是增函数,又,222242821621338254912284162123135258389493859解(2)0.6110.6,451245123232()()解(3)借助数 4.53.6打桥,利用指数函数的单调性,4.54.14.53.6,作函数 y14.5x,y2 3.7x的图像如图263,取 x3.6,得 4.53.63.73.6 4.54.1 3.73.6说明如何比较两个幂的大小:若不同底先化为同底的幂,再利用指数函数的单调性进行比较,如例 2 中的(1)若是两个不同底且指数也不同的幂比较大小时,有两个技巧,其一借助1 作桥梁,如例2 中的(2)其二构造一个新的幂作桥梁,这个新的幂具有与4.54.1同底与 3.73.6同指数的特点,即为 4.53.6(或 3.74.1),如例 2 中的(3)练习:(1)1.72.5 与 1.73(2)0.10.8与0.20.8文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9(3)1.70.3 与 0.93.1()5.31.2和7.20.2【例4】解比较大小与 且 ,当 ,aaaaan nnnnnnnnnn n11111111(a0a1n1)0a1n10()(),当 时,aaan naaan nnnnnn nnnnn1111111111()()()1a1n101【例 5】作出下列函数的图像:(1)y(2)y22x,()121x(3)y 2|x-1|(4)y|1 3x|解 (1)y(264)(0)(11)y1的图像如图,过点,及 ,是把函数的图像向左平移个单位得到的()()1212121xx解(2)y 2x2 的图像(如图 265)是把函数y 2x的图像向下平移2 个单位得到的解(3)利用翻折变换,先作y2|x|的图像,再把y 2|x|的图像向右平移1个单位,就得y 2|x-1|的图像(如图 266)解(4)作函数 y3x的图像关于x 轴的对称图像得y 3x的图像,再把y3x的图像向上平移1 个单位,保留其在x 轴及 x 轴上方部分不变,把x 轴下方文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9的图像以x 轴为对称轴翻折到x 轴上方而得到(如图 267)【例8】已知f(x)(a1)aaxx11(1)判断 f(x)的奇偶性;(2)求 f(x)的值域;(3)证明 f(x)在区间(,)上是增函数解(1)定义域是Rf(x)f(x),aaaaxxxx1111函数 f(x)为奇函数(2)yy1a1y1x函数,有 ,aayyyyxx1111110即 f(x)的值域为(1,1)(3)设任意取两个值x1、x2(,)且 x1x2f(x1)f(x2),故在 上为增函数aaaaaaaaaaaaxlxlxxxlxxlxxxxx112121221212211()()()a1xx(1)(1)0f(x)f(x)f(x)R1212单元测试题一、选择题:(本题共12 小题,每小题5 分,共 60 分)1、化简1111132168421212121212,结果是()A、11321122B、113212 C、13212 D、13211 222、44366399aa等于()A、16aB、8aC、4aD、2a3、若1,0ab,且2 2bbaa,则bbaa的值等于()文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9A、6 B、2 C、2 D、2 4、函数2()1xf xa在 R上是减函数,则a的取值范围是()A、1a B、2a C、2a D、12a5、下列函数式中,满足1(1)()2f xf x的是()A、1(1)2x B、14x C、2xD、2x6、下列2()(1)xxf xaa是()A、奇函数 B、偶函数 C、非奇非偶函数 D、既奇且偶函数7、已知,0ab ab,下列不等式(1)22ab;(2)22ab;(3)ba11;(4)1133ab;(5)1133ab中恒成立的有()A、1 个 B、2 个 C、3 个 D、4 个8、函数2121xxy是()A、奇函数 B、偶函数 C、既奇又偶函数 D、非奇非偶函数9、函数121xy的值域是()A、,1 B、,00,C、1,D、(,1)0,10、已知01,1ab,则函数xyab的图像必定不经过()A、第一象限 B、第二象限 C、第三象限 D、第四象限11、2()1()(0)21xF xf xx是偶函数,且()f x不恒等于零,则()f x()A、是奇函数 B、可能是奇函数,也可能是偶函数C、是偶函数 D、不是奇函数,也不是偶函数12、一批设备价值a万元,由于使用磨损,每年比上一年价值降低%b,则n年后这批设备的价值为()A、(1%)nab B、(1%)anb C、1(%)nab D、(1%)nab二、填空题:(本题共4小题,每小题4 分,共 16 分,请把答案填写在答题纸上)13、若103,104xy,则10 xy。文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B914、函数22811(31)3xxyx的值域是。15、函数22 33xy的单调递减区间是。16、若21(5)2xfx,则(125)f。三、解答题:(本题共6小题,共74 分,解答应写出文字说明,证明过程或演算步骤.)17、设01a,解关于x的不等式22232223xxxxaa。18、已知3,2x,求11()142xxfx的最小值与最大值。19、设aR,22()()21xxaaf xxR,试确定a的值,使()fx为奇函数。20、已知函数22513xxy,求其单调区间及值域。文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:CJ1E8K5I2A8 HK6W3L7U4O9 ZD6E1I10U4B9文档编码:C

    注意事项

    本文(2022年指数函数知识点总结3 .pdf)为本站会员(Q****o)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开