2022年必修1----第二章基本初等函数知识点总结复习 .pdf
0/9 必修 1 基本初等函数知识点整理一、指数与指数幂的运算(1)根式的概念如果,1nxa aR xR n,且nN,那么x叫做a的n次方根当n是奇数时,_x当n是偶数时,当_,0 xa;当a0,_x;当0a,_x式子na叫做 _,这里n叫做 _,a叫做 _当n为奇数时,a为 _;当n为偶数时,_a根式的性质:()nnaa;当n为奇数时,nnaa;当n为偶数时,(0)|(0)nnaaaaaa(2)分数指数幂的概念正数的正分数指数幂的意义是:(0,mnmnaaam nN且1)n0 的正分数指数幂等于_正数的负分数指数幂的意义是:11()()(0,mmmnnnaam nNaa0 的负分数指数幂_(3)分数指数幂的运算性质_sraa_sraa_)(sra练习:1.下列根式与分数指数幂的互化,正确的是()(A)12()(0)xxx (B)1263(0)yyy(C)33441()(0)xxx(D)133(0)xx x2.已知11223xx,求22332223xxxx的值;二、指数函数及其性质定义函数 _叫做指数函数图象1a01a定义域值域过定点奇偶性单调性当 x0 时,y_;当 x0 时,y_;当 x0 时,y_ 1/9 练习:1.设0 x,且1xxab(0a,0b),则a与b的大小关系是()(A)1ba(B)1ab(C)1ba(D)1ab2.函数xexf11)(的定义域是3.如图为指数函数xxxxdycybyay)4(,)3(,)2(,)1(,则dcba,与 1 的大小关系为(A)dcba1(B)cdab1(C)dcba1(D)cdba14.若函数myx 12的图象不经过第一象限,则m的取值范围是()(A)2m(B)2m(C)1m(D)1m5.已知 f(x)2xxee且 x0,)(1)判断 f(x)的奇偶性;(2)判断 f(x)的单调性,并用定义证明三、对数与对数运算(1)对数的定义:若(0,1)xaN aa且,则x叫做以a为底N的对数,记作_x,其中a叫做 _,N叫做 _(2)几个重要的对数恒等式:log 10a,log1aa,logbaab(3)常用对数:(以_为底),记作:_;自然对数:(以_为底),记作:_(4)对数的运算性质如果0,1,0,0aaMN,那么_)(logMNa_)(logNMaloglog()naanMMnRlogaNaNloglog(0,)bnaanMM bnRb换底公式:loglog(0,1)logbabNNbba且练习:1._,2log6log31log.2_,32log63564xx则若3.设,518,9log18ba,求45log36.4.已知35abc,且112ab,求c的值5.求方程22log(1)2log(1)xx的解6.求函数22(log)(log)34xxy在区间22,8上的最值O xyadcb文档编码:CP8K6O2E10E3 HE10E2T4L2D1 ZJ1K9U1L10M10文档编码:CP8K6O2E10E3 HE10E2T4L2D1 ZJ1K9U1L10M10文档编码:CP8K6O2E10E3 HE10E2T4L2D1 ZJ1K9U1L10M10文档编码:CP8K6O2E10E3 HE10E2T4L2D1 ZJ1K9U1L10M10文档编码:CP8K6O2E10E3 HE10E2T4L2D1 ZJ1K9U1L10M10文档编码:CP8K6O2E10E3 HE10E2T4L2D1 ZJ1K9U1L10M10文档编码:CP8K6O2E10E3 HE10E2T4L2D1 ZJ1K9U1L10M10文档编码:CP8K6O2E10E3 HE10E2T4L2D1 ZJ1K9U1L10M10文档编码:CP8K6O2E10E3 HE10E2T4L2D1 ZJ1K9U1L10M10文档编码:CP8K6O2E10E3 HE10E2T4L2D1 ZJ1K9U1L10M10文档编码:CP8K6O2E10E3 HE10E2T4L2D1 ZJ1K9U1L10M10文档编码:CP8K6O2E10E3 HE10E2T4L2D1 ZJ1K9U1L10M10文档编码:CP8K6O2E10E3 HE10E2T4L2D1 ZJ1K9U1L10M10文档编码:CP8K6O2E10E3 HE10E2T4L2D1 ZJ1K9U1L10M10文档编码:CP8K6O2E10E3 HE10E2T4L2D1 ZJ1K9U1L10M10文档编码:CP8K6O2E10E3 HE10E2T4L2D1 ZJ1K9U1L10M10文档编码:CP8K6O2E10E3 HE10E2T4L2D1 ZJ1K9U1L10M10文档编码:CP8K6O2E10E3 HE10E2T4L2D1 ZJ1K9U1L10M10文档编码:CP8K6O2E10E3 HE10E2T4L2D1 ZJ1K9U1L10M10文档编码:CP8K6O2E10E3 HE10E2T4L2D1 ZJ1K9U1L10M10文档编码:CP8K6O2E10E3 HE10E2T4L2D1 ZJ1K9U1L10M10文档编码:CP8K6O2E10E3 HE10E2T4L2D1 ZJ1K9U1L10M10文档编码:CP8K6O2E10E3 HE10E2T4L2D1 ZJ1K9U1L10M10文档编码:CP8K6O2E10E3 HE10E2T4L2D1 ZJ1K9U1L10M10文档编码:CP8K6O2E10E3 HE10E2T4L2D1 ZJ1K9U1L10M10文档编码:CP8K6O2E10E3 HE10E2T4L2D1 ZJ1K9U1L10M10文档编码:CP8K6O2E10E3 HE10E2T4L2D1 ZJ1K9U1L10M10文档编码:CP8K6O2E10E3 HE10E2T4L2D1 ZJ1K9U1L10M10文档编码:CP8K6O2E10E3 HE10E2T4L2D1 ZJ1K9U1L10M10文档编码:CP8K6O2E10E3 HE10E2T4L2D1 ZJ1K9U1L10M10文档编码:CP8K6O2E10E3 HE10E2T4L2D1 ZJ1K9U1L10M10文档编码:CP8K6O2E10E3 HE10E2T4L2D1 ZJ1K9U1L10M10文档编码:CP8K6O2E10E3 HE10E2T4L2D1 ZJ1K9U1L10M10文档编码:CP8K6O2E10E3 HE10E2T4L2D1 ZJ1K9U1L10M10文档编码:CP8K6O2E10E3 HE10E2T4L2D1 ZJ1K9U1L10M10文档编码:CP8K6O2E10E3 HE10E2T4L2D1 ZJ1K9U1L10M10文档编码:CP8K6O2E10E3 HE10E2T4L2D1 ZJ1K9U1L10M10文档编码:CP8K6O2E10E3 HE10E2T4L2D1 ZJ1K9U1L10M10文档编码:CP8K6O2E10E3 HE10E2T4L2D1 ZJ1K9U1L10M10文档编码:CP8K6O2E10E3 HE10E2T4L2D1 ZJ1K9U1L10M10文档编码:CP8K6O2E10E3 HE10E2T4L2D1 ZJ1K9U1L10M10文档编码:CP8K6O2E10E3 HE10E2T4L2D1 ZJ1K9U1L10M10文档编码:CP8K6O2E10E3 HE10E2T4L2D1 ZJ1K9U1L10M10文档编码:CP8K6O2E10E3 HE10E2T4L2D1 ZJ1K9U1L10M10文档编码:CP8K6O2E10E3 HE10E2T4L2D1 ZJ1K9U1L10M10文档编码:CP8K6O2E10E3 HE10E2T4L2D1 ZJ1K9U1L10M10文档编码:CP8K6O2E10E3 HE10E2T4L2D1 ZJ1K9U1L10M10文档编码:CP8K6O2E10E3 HE10E2T4L2D1 ZJ1K9U1L10M102/9 四、对数函数及其性质定义函数 _叫做对数函数图象1a01a定义域值域过定点奇偶性单调性当 0 x1 时,y_ 当 0 x1 时,y_ 练习:1.函数12log(32)yx的定义域是:()A 1,)B 23(,)C23,1D 23(,12.若函数)1,0)(logaabxya的图象过两点(-1,0)和(0,1),则()(A)a=2,b=2(B)a=2,b=2(C)a=2,b=1(D)a=2,b=2 3.已知7.01.17.01.1,8.0log,8.0logcba,则cba,的大小关系是()(A)cba(B)cab(C)bac(D)acb4.已知函数f(x)=2log(0)3(0)xx xx,则 f f(14)的值是()A9 B19 C 9 D195.函数 y=|log2x|的图象是()6.如果log 5log 50ab,那么 a、b 间的关系是()A 01ab B 1ab C 01ba D 1ba7若 0 a1,f(x)|logax|,则下列各式中成立的是()A 1 x y O B 1 x y O C 1 x y O D 1 x y O 文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O93/9 Af(2)f(13)f(14)B f(14)f(2)f(13)C f(13)f(2)f(14)D f(14)f(13)f(2)8.已知 ab,函数 f(x)(x a)(x b)的图象如图所示,则函数g(x)loga(xb)的图象可能为()9已知:()lg()xxfxab(a1b0)(1)求)(xf的定义域(2)判断)(xf的单调性(3)若)(xf在(1,)恒为正,比较a-b 与 1 的大小五、幂函数(1)幂函数的定义:一般地,函数_叫做幂函数,其中x为_,是_(2)常见幂函数的图象(在同一坐标系中画出下列函数的图像)23232211xyxyxyxyxyxy(3)幂函数的性质图象分布:在第_象限都有图像,在第 _象限无图象 过定点:_单调性:如果0,在0,)上为 _函数如果0,则在(0,)上为 _函数,并且无限接近 _ 奇偶性:当为奇数时,幂函数为_函数,当为偶数时,幂函数为_函数当qp(其中,p q互质,p和qZ),若p为奇数q为奇数时,则qpyx是 _函数,若p为奇数q为偶数时,则qpyx是_函数,若p为偶数q为奇数时,则qpyx是_函数练习:1函数 y(1 2x)21的定义域是 _ 2.幂函数的图象过点(2,14),则它的单调递增区间是3.函数43xy在区间上是减函数4下列命题中正确的是()A当0 时,函数yx的图象是一条直线B幂函数的图象都经过(0,0),(1,1)两点C幂函数的yx图象不可能在第四象限内D 若幂函数yx为奇函数,则在定义域内是增函数文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O94/9 六、函数的零点:对于函数y=f(x),我们把使 _的实数 x 叫做函数y=f(x)的零点,函数的零点是一个_零点的存在性定理:如果函数y=f(x)在区间 a,b上的图象是连续不断的一条曲线,并且有_,那么函数y=f(x)在区间(a,b)内有零点,即存在 c(a,b),使得 f(c)=0,这个 c 也就是方程f(x)=0 的根.练习:1.已知函数f(x)2x1,x1,1log2x,x1,则函数 f(x)的零点为()A.12,0 B.2,0 C.12D.0 2.在下列区间中,函数f(x)ex4x3 的零点所在的区间为()A(14,0)B(0,14)C(14,12)D(12,34)3.函数 f(x)(12)xsinx 在区间 0,2上的零点个数为_4.若函数 f(x)x3x22x2 的一个正数零点附近的函数值用二分法计算,其参考数据如下表f(1)2 f(1.5)0.625 f(1.25)0.984 f(1.375)0.260 f(1.4375)0.162 f(1.40625)0.054 那么方程x3x22x20 的一个近似根(精确到 0.1)为()A.1.5 B.1.4 C.1.3 D.1.2 七、一元二次方程的实根分布问题一元二次方程的根,其实质就是其相应二次函数的图象与x 轴交点的横坐标,因此,可以借助于二次函数及其图象,利用数形结合的方法来研究一元二次方程的实根分布问题,一元二次方程 ax2+bx+c=0(a0)的实根分布根的分布情况两个根均小于m 两个根均大于m 一根 m,一根 m 图像OxykOxykxOyk文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O95/9 条件根的分布情况两个根均在(m,n)内两根均在 m,n 外X1(m,n),X2(p,q)图像条件2.已知方程2210 xmxm有两个不等正实根,求实数m的取值范围OxynmnOxymOxypmqn0)(20kfkab0)(20kfkab0)(kf0)(0)(20nfmfnabm0)()0(nfmf0)(0)(0)(0)(qfpfnfmf1.已知方程 x2+(m 3)x+m=0 的两个根均小于1,求实数 m的取值范围。文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O96/9 3.关于 x的方程 2kx2-2x-3k-2=0的二根,一个小于1,另一个大于1,则求实数 k的取值范围。4.设关于x的方程bbxx(0241R),(1)若方程有实数解,求实数b 的取值范围;(2)当 x 在-1,2时原方程有两个解,求b 的范围七、函数模型1某物体一天中的温度T 是时间 t 的函数:T(t)=t3-3t+60,时间单位是小时,温度单位是C,当 t=0 表示中午12:00,其后 t 值取为正,则上午 8 时的温度是()A8 CB112 C C58 C D 18 C2.某产品的总成本y(万元)与产量x(台)之间的函数关系式是y=3000+20 x0.1x2(0 x240,xN),若每台产品的售价为25 万元,则生产者不亏本时(销售收入不小于总成本)的最低产量是()A100 台B120 台C150 台 D180 台3.某商场购进一批单价为6 元的日用品,销售一段时间后,为了获得更多利润,商场决定提高销售价格。经试验发现,若按每件20 元的价格销售时,每月能卖360 件,若按 25 元的价格销售时,每月能卖210 件,假定每月销售件数y(件)是价格x(元/件)的一次函数。试求y 与 x 之间的关系式在商品不积压,且不考虑其它因素的条件下,问销售价格定为时,才能时每月获得最大利润每月的最大利润是4.某医药研究所开发一种新药,如果成人按规定的剂量服用,据监测:服药后每毫升血液中的含药量y 与时间文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V7G1D5B3 HO2F3O2U8A6 ZX10I1E10I7O9文档编码:CK9V