欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    高一函数整理版(知识点+练习题).doc

    • 资源ID:60325962       资源大小:3.21MB        全文页数:29页
    • 资源格式: DOC        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    高一函数整理版(知识点+练习题).doc

    函数复习主要知识点一、函数的概念与表示 1、映射与函数(1)映射:设,如果按照某种映射法则f,对于集合A中的任一个元素,在集合B中都有唯一的元素和它对应,则这样的对应(包括集合A、B以及A到B的对应法则f)叫做集合A到集合B的映射,记作f:AB。(2)函数是特殊的映射:f:AB(A、B是两个 集)注意点:(1)对映射定义的理解。(2)判断一个对应是映射的方法。一对多不是映射, 是映射2、函数:(1)函数记法及理解; :(2)构成函数概念的三要素 定义域对应法则值域两个函数是同一个函数的条件:三要素有两个相同(3)函数的三种表示法: (4)几种常见函数的三要素 (1)一次函数 、(2)二次函数 (3)反比例函数 (4)指数函数 (5)对数函数 (6)三角函数 (7)幂函数 特例 ,热练:1、下列各对函数中,相同的是 ( )A、 B、 C、 D、f(x)=x,2、给出下列四个图形,其中能表示从集合M到集合N的函数关系的有 ( )A、 0个 B、 1个 C、 2个 D、3个xxxx1211122211112222yyyy3OOOO3函数y=定义域是( )A、 B C D其它函数如双钩函数,分段函数,复合函数,抽象函数等也涉及二、函数的解析式与定义域(1)求 函 数 解 析 式 的 几 种形式 例1 设是一次函数,且,求待定系数法:在已知函数解析式的构造时,可用待定系数法。例2 已知 ,求 的解析式配凑法:已知复合函数的表达式,求的解析式,的表达式容易配成的运算形式时,常用配凑法。但要注意所求函数的定义域不是原复合函数的定义域,而是的值域。例3 已知,求 及的解析式换元法:已知复合函数的表达式时,还可以用换元法求的解析式。与配凑法一样,要注意所换元的定义域的变化。例4已知:函数的图象关于点对称,求的解析式解:设为上任一点,且为关于点的对称点 则,解得: ,点在上 把代入得: 整理得 代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法。例5 设求例6 设为偶函数,为奇函数,又试求的解析式构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式。例7 已知:,对于任意实数x、y,等式恒成立,求解对于任意实数x、y,等式恒成立,不妨令,则有 再令 得函数解析式为:赋值法:当题中所给变量较多,且含有“任意”等条件时,往往可以对具有“任意性”的变量进行赋值,使问题具体化、简单化,从而求得解析式。七、递推法:若题中所给条件含有某种递进关系,则可以递推得出系列关系式,然后通过迭加、迭乘或者迭代等运算求得函数解析式。例8 设是定义在上的函数,满足,对任意的自然数 都有,求 解 ,不妨令,得:,又 分别令式中的 得: 将上述各式相加得:, 1、求函数定义域的主要依据:(1)分式的分母不为零;(2)偶次方根的被开方数不小于零,零取零次方没有意义;(3)对数函数的真数必须大于零;(4)指数函数和对数函数的底数必须大于零且不等于1; 6.(05江苏卷)函数的定义域为2求函数定义域的两个难点问题(1) (2) 例2设,则的定义域为_变式练习:,求的定义域。 变式三、函数的值域1求函数值域的方法直接法:从自变量x的范围出发,推出y=f(x)的取值范围,适合于简单的复合函数;换元法:利用换元法将函数转化为二次函数求值域,适合根式内外皆为一次式;判别式法:运用方程思想,依据二次方程有根,求出y的取值范围;适合分母为二次且R的分式;分离常数:适合分子分母皆为一次式(x有范围限制时要画图);单调性法:利用函数的单调性求值域;图象法:二次函数必画草图求其值域;利用对号函数几何意义法:由数形结合,转化距离等求值域。主要是含绝对值函数1(直接法)2 3(换元法)4. (法) 5. 6. (分离常数法) 7. (单调性)8., (结合分子/分母有理化的数学方法)9(图象法)10(对勾函数) 11. (几何意义)一、选择题1判断下列各组中的两个函数是同一函数的为( ),;,;,;,;,。A、 B、 C D、2函数的图象与直线的公共点数目是( )A B C或 D或3已知集合,且使中元素和中的元素对应,则的值分别为( )A B C D4已知,若,则的值是( )A B或 C,或 D5已知函数定义域是,则的定义域是( )A B. C. D. 6函数的值域是( )A B C D7已知,则的解析式为( )A B C D8若集合,则是( )A B. C. D.有限集9函数的图象是( )10若函数的定义域为,值域为,则的取值范围是( )A B C D11若函数,则对任意实数,下列不等式总成立的是( )A BC D12函数的值域是( )A B C D 二、填空题1若函数,则= .2函数的值域是 。3设函数,当时,的值有正有负,则实数的范围 。4设函数则实数的取值范围是 。5函数的定义域是_。三、解答题1求下列函数的定义域(1) (2)(3) (4)2求下列函数的值域(1) (2) (3) (4)3.求函数的值域。4设是方程的两实根,当为何值时, 有最小值?求出这个最小值.5利用判别式方法求函数的值域。6已知为常数,若则求的值。7对于任意实数,函数恒为正值,求的取值范围。四函数的奇偶性1定义:设y=f(x),xA,如果对于任意A,都有,则称y=f(x)为偶函数。如果对于任意A,都有,则称y=f(x)为奇函数。2.性质:y=f(x)是偶函数y=f(x)的图象关于轴对称, y=f(x)是奇函数y=f(x)的图象关于原点对称,若函数f(x)的定义域关于原点对称,则f(0)=0奇±奇=奇 偶±偶=偶 奇×奇=偶 偶×偶=偶 奇×偶=奇两函数的定义域D1 ,D2,D1D2要关于原点对称3奇偶性的判断看定义域是否关于原点对称看f(x)与f(-x)的关系1 已知函数是定义在上的偶函数. 当时,则当时, .2 已知定义域为的函数是奇函数。()求的值;()若对任意的,不等式恒成立,求的取值范围;3 已知在(1,1)上有定义,且满足证明:在(1,1)上为奇函数;4 若奇函数满足,则_五、函数的单调性1、函数单调性的定义:2 设是定义在M上的函数,若f(x)与g(x)的单调性相反,则在M上是减函数;若f(x)与g(x)的单调性相同,则在M上是增函数。1判断函数的单调性。2例 函数对任意的,都有,并且当时, 求证:在上是增函数; 若,解不等式 3函数的单调增区间是_4(高考真题)已知是上的减函数,那么的取值范围是 ( )(A) (B) (C)(D)函数单调性 题型一:函数单调性的证明1, 取值 2,作差 3,定号 4,结论 二:函数单调性的判定,求单调区间 () ()三:函数单调性的应用1.比较大小 例:如果函数对任意实数都有,那么 A、 B、C、 C、2.解不等式例:定义在(1,1)上的函数是减函数,且满足:,求实数的取值范围。 例:设 是定义在 上的增函数, ,且 ,求满足不等式 的x的取值范围.3.取值范围例:  函数 在 上是减函数,则 的取值范围是_例:若是上的减函数,那么的取值范围是( )A. B. C.D.4. 二次函数最值例:探究函数在区间的最大值和最小值。例:探究函数在区间的最大值和最小值。5.抽象函数单调性判断例:已知函数的定义域是,当时,且 求,证明在定义域上是增函数如果,求满足不等式2的的取值范围例:已知函数f(x)对于任意x,yR,总有f(x)f(y)f(xy),且当x>0时,f(x)<0,f(1).(1)求证:f(x)在R上是减函数; (2)求f(x)在3,3上的最大值和最小值例:已知定义在区间(0,)上的函数f(x)满足f()f(x1)f(x2),且当x>1时,f(x)<0.(1)求f(1)的值;(2)判断f(x)的单调性;(3)若f(3)1,解不等式f(|x|)<2.单调性习题1在区间(0,)上不是增函数的函数是( )Ay=2x1By=3x21Cy=Dy=2x2x12函数f(x)=4x2mx5在区间2,上是增函数,在区间(,2)上是减函数,则f(1)等于A7B1C17D253函数f(x)在区间(2,3)上是增函数,则y=f(x5)的递增区间是( )A(3,8)B(7,2)C(2,3)D(0,5)4已知函数f(x)在区间a,b上单调,且f(a)f(b)0,则方程f(x)=0在区间a,b内( )A至少有一实根 B至多有一实根 C没有实根 D必有唯一的实根5已知定义域为R的函数f(x)在区间(,5)上单调递减,对任意实数t,都有f(5t)f(5t),那么下列式子一定成立的是( )Af(1)f(9)f(13)Bf(13)f(9)f(1)Cf(9)f(1)f(13)Df(13)f(1)f(9)6已知f(x)在区间(,)上是增函数,a、bR且ab0,则下列不等式中正确的是( )Af(a)f(b)f(a)f(b)Bf(a)f(b)f(a)f(b)Cf(a)f(b)f(a)f(b)Df(a)f(b)f(a)f(b)7、已知函数,若,则等于 A、 B、 C、 D、-8、若是R上的减函,且的图象经过点和,则不等式的解集为 A、 B、 C、 D、9、已知函数在R上是减函数,则有 A、 B、 C、 D、10定义在R上的函数y=f(x)在(,2)上是增函数,且y=f(x2)图象的对称轴是x=0,则( )Af(1)f(3)Bf (0)f(3) Cf (1)=f (3) Df(2)f(3)11已知 是常数),且 ,则 的值为_12、函数的增区间是 13、设是上的减函数,则的单调递减区间为 .14.用定义证明:函数在上是增函数15f(x)是定义在( 0,)上的增函数,且f() = f(x)f(y) (1)求f(1)的值 (2)若f(6)= 1,解不等式 f( x3 )f() 2 16已知函数f(x)=,x1,(1)当a=时,求函数f(x)的最小值;(2)若对任意x1,f(x)0恒成立,试求实数a的取值范围六函数的周期性:1(定义)若是周期函数,T是它的一个周期。说明:nT也是的周期(推广)若,则是周期函数,是它的一个周期对照记忆说明:说明:2若;则周期是21 已知定义在R上的奇函数f(x)满足f(x+2)=f(x),则,f(6)的值为(A)1 (B) 0 (C) 1 (D)22 定义在R上的偶函数,满足,在区间-2,0上单调递减,设,则的大小顺序为_3 已知f (x)是定义在实数集上的函数,且则f (2005)= .4 已知是(-)上的奇函数,当01时,f(x)=x,则f(7.5)=_例11 设是定义在R上的奇函数,且对任意实数x恒满足,当时求证:是周期函数;当时,求的解析式;计算:七二次函数(涉及二次函数问题必画图分析)1二次函数f(x)=ax2+bx+c(a0)的图象是一条抛物线,对称轴,顶点坐标2二次函数与一元二次方程关系一元二次方程的根为二次函数f(x)=ax2+bx+c(a0)的的取值。一元二次不等式的解集(a>0)二次函数情况一元二次不等式解集Y=ax2+bx+c (a>0)=b2-4acax2+bx+c>0 (a>0)ax2+bx+c<0 (a>0)图象与解>0=0<0R1、已知函数在区间上是增函数,则的范围是( )(A) (B) (C) (D) 2、方程有一根大于1,另一根小于1,则实根m的取值范围是_八指数式与对数式1幂的有关概念(1)零指数幂(2)负整数指数幂(3)正分数指数幂;(5)负分数指数幂(6)0的正分数指数幂等于0,0的负分数指数幂没有意义.2有理数指数幂的性质 3根式根式的性质:当是奇数,则;当是偶数,则4对数(1)对数的概念:如果,那么b叫做以a为底N的对数,记(2)对数的性质:零与负数没有对数 (3)对数的运算性质 logMN=logM+logN 对数换底公式:对数的降幂公式: (1) (2) 十指数函数与对数函数1、 指数函数y=ax与对数函数y=logax (a>0 , a1)互为反函数名称指数函数对数函数一般形式Y=ax (a>0且a1)y=logax (a>0 , a1)定义域(-,+ )(0,+ )值域(0,+ )(-,+ )过定点(,1)(1,)图象指数函数y=ax与对数函数y=logax (a>0 , a1)图象关于y=x对称单调性a> 1,在(-,+ )上为增函数a<1, 在(-,+ )上为减函数a>1,在(0,+ )上为增函数a<1, 在(0,+ )上为减函数值分布y>1 ? y<1?y>0? y<0?2. 比较两个幂值的大小,是一类易错题,解决这类问题,首先要分清底数相同还是指数相同2、 ,如果底数相同,可利用指数函数的单调性;指数相同,可以利用指数函数的底数与图象关系(对数式比较大小同理)记住下列特殊值为底数的函数图象:3、 研究指数,对数函数问题,尽量化为同底,并注意对数问题中的定义域限制4、 指数函数与对数函数中的绝大部分问题是指数函数与对数函数与其他函数的复合问题,讨论复合函数的单调性是解决问题的重要途径。1、(1)的定义域为_;(2)的值域为_;(3)的递增区间为,值域为2、(1),则3、要使函数在上恒成立。求的取值范围。4.若a2x+·ax0(a0且a1),求y=2a2x3·ax+4的值域.基础练习题一、选择题1 下列函数与有相同图象的一个函数是( )A B C D 2 下列函数中是奇函数的有几个( ) A B C D 3 函数与的图象关于下列那种图形对称( )A 轴 B 轴 C 直线 D 原点中心对称4 已知,则值为( )A B C D 5 函数的定义域是( )A B C D 6 三个数的大小关系为( )A B C D 7 若,则的表达式为( )A B C D 二、填空题1 从小到大的排列顺序是 2 化简的值等于_ 3 计算:= 4 已知,则的值是_ 5 方程的解是_ 6 函数的定义域是_;值域是_ 7 判断函数的奇偶性 三、解答题1 已知求的值 2 计算的值 3 已知函数,求函数的定义域,并讨论它的奇偶性单调性 4 (1)求函数的定义域 (2)求函数的值域 考点训练考点1、指数函数、图像、性质(注意参数的分类讨论、及数形结合的应用、转化思想的应用)EG1、若方程有正数解,则实数的取值范围是 D (A) (B) (C) (D)B1-1、下列函数中,值域为(0,+)的是 B ( )A B C DB1-2、关于方程 的解的个数是B( )A. 1B. 2C. 0D. 视a的值而定B1-3、 已知函数是奇函数,当时,设的反函数是,则 .-2考点2、对数函数、图像、性质(注意参数的分类讨论、及数形结合的应用、转化思想的应用)EG2、.函数y=loga(-x2-4x+12)(0a1)的单调递减区间是A. (-2,-) B. (-6,-2) C. (-2,2) D. (-,-2B2-1. 若关于x的方程(2-2-x)2=2+a有实根,则实数a的取值范围是A. a-2 B. 0a2 C. -1a2 D. -2a2B2-2函数y=log(xax3a)在2,)上是减函数,则a的取值范围是(A)(,4) (B)(4,4 (C)(,4)2, (D)4,4B2-3.若,则实数的取值范围是 A或 B C DB2-4若函数在上的最大值是最小值的3倍,则a=A. B. C. D. B2-5、函数y=log2(1-x)的图象是y1Oxy1Oxxy1Oy1Ox (A) (B) (C) (D)方法归纳1解决与对数函数有关的问题,要特别重视定义域; 2指数函数、对数函数的单调性决定于底数大于1还是小于1,要注意对底数的讨论;3比较几个数的大小的常用方法有:以和为桥梁;利用函数的单调性;作差实战训练2、函数y=()x-2x在区间-1, 1上的最大值为 . 3、记函数的反函数为,则 A 2 B C 3 D 4、 若函数f(x)=logxa在2,4上的最大值与最小值之差为2,则a=_5函数的定义域是_ 6f(x)=则满足f(x)=的x的值是_7设是函数的反函数,若,则f(a+b)的值为 A. 1 B. 2 C. 3 D. 8函数在上是增函数,则的取值范围是( ).A. B. C. D. .9、 如果那么的取值范围是A、 B、 C、 D、10、a若不等式内恒成立,则实数的取值11函数的反函数为等于AB7C9D7或912已知函数(其中,)。(1)求反函数及其定义域;(2)解关于的不等式解1)当时,由得出函数定义域;当时,由得函数定义域为。 由则故 当时,;当时,(2)由 则原不等式13已知函数的图象与的图象关于直线y=x对称,求的递减区间解: 而 递增, 递减14、定义在R上的奇函数有最小正周期为2,且时,(1)求在1,1上的解析式;(2)判断在(0,1)上的单调性;(3)当为何值时,方程=在上有实数解.解(1)xR上的奇函数 又2为最小正周期 设x(1,0),则x(0,1),(2)设0<x1<x2<1 = 在(0,1)上为减函数。(3)在(0,1)上为减函数。 即 同理在(1,0)时,又当或时在1,1内有实数解。补充:1、函数对于任意的实数都有(A)(B)(C)(D)2、方程的解是_ 3、函数的反函数4、已知函数y=log2x的反函数是y=f-1(x),则函数y= f-1(1-x)的图象是5、是函数为偶函数的(A) 充分不必要条件 (B)必要不充分条件(C) 充分必要条件 (D)既不充分也不必要条件6已知函数的值域为R,且f(x)在(上是增函数,则a的范围是 .十函数的图象变换(1) 1、平移变换:(左+ 右- ,上+ 下- )即 对称变换:(对称谁,谁不变,对称原点都要变)1f(x)的图象过点(0,1),则f(4-x)的反函数的图象过点( )A.(3,0) B.(0,3) C.(4,1) D.(1,4)2作出下列函数的简图:(1)y=|log|; (2)y=|2x-1|;(3)y=2|x|; 函数图像的变换 函数图象及变化规则掌握几类基本的初等函数图像是学好本内容的前题 1、 基本函数(1)一次函数、(2)二次函数、(3)反比例函数、 (4)指数函数、(5)对数函数、(6)三角函数。 2、图象的变换 (1)平移变换(左加右减)函数y=f(x+2)的图象是把函数y=f(x)的图像沿x轴向左平移2个单位得到的;反之向右移2个单位函数y=f(x)-3(的图象是把函数y=f(x)的图像沿y轴向下平移3个单位得到的;反之向上移3个单位(2)对称变换 函数y=f(x)与函数y=f(-x)的图象关于直线x=0对称; 函数y=f(x) 与函数y=-f(x)的图象关于直线y=0对称;函数y=f(x)与函数y=-f(-x)的图象关于坐标原点对称;如果函数y=f(x)对于一切xR都有f(x+a)=f(x-a),那么y=f(x)的图象关于直线x=a对称。y=f-1(x)与y=f(x)关于直线y=x对称 y=f(x)y=f(|x|) 3、伸缩变换y=af(x)(a>0)的图象,可将y=f(x)的图象上的每一点的纵坐标伸长(a>1)或缩短(0<a<1)到原来的a倍。 y=f(ax)(a>0)的图象,可将y=f(x)的图象上的每一点的横坐标缩短(a>1)或伸长(0<a<1)到原来的a倍。 1. 函数y=1+ax(0<a<1)的反函数的图象大致是 (A) (B) (C) (D) 2、函数y=-lg(x+1)的图象大致是 3、的图象不经过第二象限,则必有( )。(A) (B) (C) (D)4、设函数,则( )。 (A) (B) (C) (D) 5、已知函数的反函数的对称中心是,则实数等于(A) (B) (C) (D)6、函数的图象(A)关于点对称 (B)关于点对称(C)关于直线对称 (D)关于直线对称7、 函数的反函数图像大致是 (A) (B) (C) ( D)8、为了得到函数的图像,只需把函数的图像上所有的点 ( )A向左平移3个单位长度,再向上平移1个单位长度 B向右平移3个单位长度,再向上平移1个单位长C向左平移3个单位长度,再向下平移1个单位长度 D向右平移3个单位长度,再向下平移1个单位长9、在下图中,二次函数 与指数函数 的图象只可能是8、设函数则下列各式成立的是( )10、若且函数则下列各式中成立的是.(A) (B) (C)(D)11、在下列函数中,在区间上为增函数的是( )(A) (B) (C) (D)12 当a1时,函数ylogax和y=(1a)x的图象只能是( )13、设,若,且,则下列关系正确的是 A 、 B、 C、 D、 14下列区间中,函数在其上为增函数的是( )A(- B C D15 对于函数,判断如下三个命题的真假:命题甲:是偶函数;命题乙:在上是减函数,在上是增函数;命题丙:在上是增函数能使命题甲、乙、丙均为真的所有函数的序号是( ) 16已知为常数,函数在区间上的最大值为2,则 17.下列函数中,满足“对任意,(0,),当<时,都有>的是( )A= B. = C .= D 18、下列函数中,既是偶函数又在单调递增的函数是( )(A) (B) (C) (D) 19 函数f(x)=1+log2x与g(x)=2-x+1在同一直角坐标系下的图象大致是( )20 下列函数中,既是偶函数,又是在区间上单调递减的函数为 A B C D21、设函数则下列各式成立的是( )(A) (B)(C) (D)22、图中的图象所表示的函数的解析式为( )(A) (0x2) (B) (0x2)(C) (0x2)(D) (0x2)23 、设函数定义在R上,则函数与函数的图象关于( )(A)直线对称 (B)直线对称 (C)直线对称 (D)直线对称24、设函数定义在R上,则函数与函数的图象关于( )(A)直线对称 (B)直线对称 (C)直线对称 (D)直线对称25、函数与函数的图像关于( )A、直线 B、点(4,0)对称 C、直线 D、点(2,0)对称十函数的其他性质 1函数的单调性通常也可以以下列形式表达: 单调递增 单调递减2函数的奇偶性也可以通过下面方法证明: 奇函数 偶函数3函数的凸凹性: 凹函数(图象“下凹”,如:指数函数) 凸函数(图象“上凸”,如:对数函数)

    注意事项

    本文(高一函数整理版(知识点+练习题).doc)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开