工程流体力学课后习题(第二版)答案.docx
第一章绪论1-1. 20C的水2.5m3,当温度升至80c时,其体积增加多少?解温度变化前后质量守恒,即pH = P U1 I 2 2又20c时,水的密度P = 998.23kg / m3 I80 时,水的密度 P =971.83kg/m3 2pv.V =-=2.5679/7132 P 2那么增加的体积为V - V = 0.06793211-2.当空气温度从0C增加至20时,运动粘度v增加15%,重度Y减少10%,问此时动力粘度N增加 多少(百分数)?解= M=vp = (l + 0.15)v (l-O.l)p 原 原=1.035v p = 1.035R .原晾原p-|i 1.035g -|i*/ w- =iw= 0.035原原此时动力粘度日增加了 3.5%1-3.有一矩形断面的宽渠道,其水流速度分布为 = 0.002pg(力y-0.5y2)/N,式中p、口分别为水的密度和动力粘度,力为水深。试求力=().5m时渠底(片0)处的切应力。解v 四=0.002pgSy)/n叱=O.OO2pg(/7-y)砂当力=0.5m, y=0时t = 0.002 x 1000 x 9.807(0.5 - 0)=9.807PQ1-4. 一底面积为45X50ciw,高为1cm的木块,质量为5kg,沿涂有润滑油的斜面向下作等速运动,木块 运动速度u=lm/s,油层厚1cm,斜坡角22.62o (见图示),求油的粘度。-A解闸门左侧水压力:P= Lpgh - b = lxl000x9.807x3x_x 1 = 62.41/c/V 2 i sina 2sin 45°作用点:h =勺= A4m3sina 3sin45。闸门右侧水压力:P= Pgh - b= 1 x1000x9.8x2x _xl =27.74kN22 sina 2sin 45。作用点:1 =4=2= 0.943m2 3sina 3sin 45c总压力大小:P=P-P = 62.41-27.74 = 34.67 kN 12对B点取矩:Ph -Ph =Ph' 1 12 2 D62.41x1.414-27.74 x 0.943 = 34.67/r Dh = 1.79mD2-15.如下图,一个有盖的圆柱形容器,底半径R=2m,容器内充满水,顶盖上距中心为r线开一个小孔通大气。容器绕其主轴作等角速度旋转。试问当多年时,顶盖所受的水的总压力为零。解液体作等加速度旋转时,压强分布为p = pg( z)+c2g积分常数C由边界条件确定:设坐标原点放在顶盖的中心,那么当r=r,Z =。时,p=p (大 0a气压),于是,气压),于是,.0)2p-p =PgI(r2 - r 2) - z° 2g °在顶盖下表z = 0,此时压强为p- p =_ po)2(r 2- r2)顶率下外表受到的液体平强是P,上外表受到的是大气压强是Pq,总的压力为零,即 JR(p- p )2nrdr = p(O2jR(r2 -r2)2nrdr = Q04积分上式,得1r 2= /?2, 。22-16.曲面48为半圆柱面,宽度为n, D=3m,试求48柱面所受静水压力的水平分内和竖直分力P?。解水平方向压强分布图和压力体如下图:11,。丫P = pgD2b pg -X 2233b = 一 PgD2b8 1= -x9810x32x1 = 33109/V 81 (Tl 、 ItP = pg I 。2 山=pg D2bz 4<4)162-17.3 14= 9810x-x32x1 =17327/V16图示一矩形闸门,14Q及力,求证”>Q+二/?时,闸门可自动翻开。211 _ u 11证明形心坐标 z =h = H-(a-ac c5210那么压力中心的坐标为h =z+qD c z A 1 cJ =Bh3;A=Bh c 12z =(H - a-2)+h?d10 12(77-a-h/10)14当,一qz,闸门自动翻开,即H>Q + _力D15第三章流体动力学基础3-1.检验"=2x2 +y, u = 2yi + z, U =-4(x + y)z + 9不可压缩流体运动是否存在? xyz解(1)不可压缩流体连续方程T+幺+”。x cy dz(2)方程左面项du8du_L = 4x; _2=4y ; _£=-4(x+y) dxcydz(2)方程左面=方程右面,符合不可压缩流体连续方程,故运动存在。3-2.某速度场可表示为 =x+t; u =-y+t; u=0,解:(l)加速度:(2) 艘 (3) t= 0时通 xyz过x=-l,尸1点的流线;(4)该速度场是否满足不可压缩流体的连续方程?解(1) a =l + x + £ Xq =+y-t 写成矢量即 a=( + x + t)i + ( + y-t)j ya =0 z(2)二维流动,- dx d',积分得流线:ln(x+t) = -ln(y-t) + Cu u1x y即(x + t)(y t) = J(3) t = O,x = -l,y = l,代入得流线中常数。=-12流线方程:9=-1 ,该流线为二次曲线du du(4)不可压缩流体连续方程:+_ + 石-。%dy z:du du duk工 二。,故方程满足。3-3.己知流速场 =(4火3 + 2+刈»+(3'一片+ 2)/,试问:(|)点(1, 1, 2)的加速度是多少? (2)是几元流动? (3)是恒定流还是非恒定流? (4)是均匀流还是非均匀流? 解u =4xi + 2y+xyXu =3x +产 +z yu = 0du du du du dua =x = x+u x+u x + u x x dt dt * dx y dy z dz=> 0 + (4x3 + 2y + xy)(12x2+y) + (3x y3 + z)(2 + x) + 0代入(1, 1, 2)=q =0 + (4 + 2+l)(12 + l) + (3-I+2)(2 + l) + 0nJ =103同理:n q = 9因此因此(1)点(1, 1, 2)处的加速度是Q = 103i +9/(2)运动要素是三个坐标的函数,属于三元流动(3) _ = (),属于恒定流动dt(4)由于迁移加速度不等于0,属于非均匀流。3-4.以平均速度v =0.15 m/s流入直径为D =2cm的排孔管中的液体,全部经8个直径d=lmm的排孔流出,假定每孔初六速度以次降低2%,试求第一孔与第八孔的出流速度各为多少?兀。271解由题意q = v=0 15xx 0.022 = 0.047 x 10-3 m3 / s = 0.047L / s v 44v = 0.98v ; v = 0.982 V ;v =0.98?v 2I 3I817ld 2Ttdlq =(v + 0.98v + 0.982 v +- + 0.98? v) = vSv 411114 «式中S0为括号中的等比级数的n项和。由于首项ajl,公比q=().98,项数n=8。于是q (1- q”)q (1- q”)1-0.9881-0.98= 7.4624q 14x0.047x10-3u v= 8.04 m / s 7i(/2 S Ji xO.OOh x7.462v = 0.987 V =0.987X8.04 = 6.98m/s 8I3-5.在如下图的管流中,过流断面上各点流速按抛物线方程:u = u 口一(一Al对称分布,式中管道 max r半径r=3cm,管轴上最大流速u =0.15m/s,试求总流量Q与断面平均流速Vo UIIluA解总流量:Q = Jua4=Jeu 1-(二g2% rdrA0 max r0TT=-u r2=_x 0.15x 0.032 =2.12x10-43/571_u n2 max 071_u n2 max 0nm= 0.075n? Is2 max 02Q断面平均流速:v=2_Hr203-6.利用皮托管原理测量输水管中的流量如下图。输水管直径c/=200mm,测得水银差压计读书h =60nun,假设此时断面平均流速v=0.84w ,这里u 为皮托管前管轴上未受扰动水流的流速,问输水管 pmaxmax中的流量Q为多大?(3.85m/s)阐 P U2 PA 4- A =.U2 p p =汽-I)/ = 12.6/1 . A = A2g pg pg P 夕 /xl2.6/? = J2 x 9.807 x 12.6 x 0.06 = 3.85m / sn 7iQ = _d2v = _x 0.22x 0.84x3.85 = 0.102n?3/s3-7.图示管路由两根不同直径的管子与一渐变连接管组成。或)0mm,=例)mm, A点相对压强 p =68.6kPa, B点相对压强万39.2kPa, B点的断面平均流速=li/s, A、B两点高差ztlZm。试判断 流动方向,并计算两断面间的果头损失h。兀兀/解 -d2V =_d2v4 A 44 B Bvr=C)2X1=4n?/sA假定流动方向为A-B,那么根据伯努利方程p a v p a v ,Z 4-r/1 + A A = ZB B斗 hA pg 2g B 而 2g 卬其中 z -z = Az ,B A取a =a « 1.0A B/. h =巳-乙一卬 pgVa - Az2g68600 - 3920042-12 _1298072x9.807=2.56m > 0故假定正确。3-8.有一渐变输水管段,与水平面的倾角为45°,如下图。己知管径4=200mm, c/KKhnin,两断面的问 距/=2m。假设1-1断面处的流速v=2m/s,水银差压计读数/二20cm,试判别流动方面,并计算两断面间的 水头损失九,和压强差pl-p2.解:_d2V =_d2V4 422di 200,v =_lv = ()2 x2 = 8/n/s2 d2 11002假定流动方向为1-2,那么根据伯努利方程P a U2 . p a V2_i_ + 11 = / sin 45。+ _2_ + 22 + hP9 2gpg 2g 卬其中1一二2 一/sin 45。= (P -l)h =12.66,取a = a « 1.0pgP p P 12V2 - vz4 -64h =12.6力 + i 2 =12.6x0.2 += ().54m<0w p 2g2x9.807故假定不正确,流动方向为2-1。由 P P 2 -1 sin 45- = 12.6/?Pgp p p得 p-p = pg(12.6 力+/sin45。) 12P=9807 x (12.6x0.2+ 2 sin 45。)= 38.58/cPq3-9.试证明变截面管道中的连续性微分方程为史.+ L竺弛二° ,这里s为沿程坐标。dt A ds证明取一微段ds,单位时间沿s方向流进、流出控制体的流体质量差m,为Am = (p -ds)(u -ds)(A-ds) - (p +ds)(u +ds)(A+ds)s 2 ds 2 ds 2 ds2 ds 2 ds 2 ds= /(P-(略去高阶项) ds因密度变化引起质量差为P dt由于 A/,s=dpd(puA)Ads = dsdtds=即 + 1 d(puA) ndt A ds3-10.为了测量石油管道的流量,安装文丘里流量计,管道直径4=200mm,流量计喉管直径c/2= 100mm, 石油密度P=850kg/m3,流量计流量系数/f0.95o现测得水银压差计读数力p=150mm.问此时管中流量Q多 大?解根据文丘里流量计公式得二 ().O513m3/s=51.3L/s3-11.离心式通风机用集流器力从大气中吸入空气。直径d=200mm处,接一根细玻璃管,管的下端插入 水槽中。管中的水上升W= 150mm,求每秒钟吸入的空气量Q。空气的密度P为1. 29kg/m3。p+pgh = pnp=p-pghp+pgh = pnp=p-pgh=47.757m/snd2 3.14x 0.22x 47.757q =v = 1.5n?3/sv 424 3-12.己知图示水平管路中的流量q =2.5L/s,直径d=5()mm, d =25mm,压力表读数为98()7Pa,假设水头 损失忽略不计,试求连接于该管收缩断面上的水管可将水沉着器而吸上的高度人解I1td2q =i vv 4Ttd24q 4x2.5x10-3=1.273n?/54 x 2.5x10-3/=5.093m /s=>P 1/21 4- 1坛27P -P V 2 a 4- 2 =>"而P +(P -p )V2-V2pgV2-V2 2 I :29807pg2g1000x9.807=0.2398mH 02p - pP + Pgh = P =>/i = -n0.2398mH 0 a pg23-13.水平方向射流,流量Q=36L/s,流速v=30m/s,受痛直于射流轴线方向的平板的阻挡,截去流量Q012L/s,并引起射流其余局部偏转,不计射流在平板上的阻力,试求射流的偏转角及对平板的作用力。(30° ;456. 6kN)r一 QQ解取射流分成三股的地方为控制体,取x轴向右为正向,取1y轴向上为正向,列水平即x方向的动量方 程,可得:-F1 = pq v cosa - pq v V22V 0y方向的动量方程:0 = pQ vsina - pg unq v sina = q v2 q v dn V22n.=> sin a = ri =()= ().5q v 24vV 22 o=> a = 30°不计重力影响的伯努利方程:p +_ p v2 = C2控制体的过流截面的压强都等于当地大气压P/因此,V0=V=V2-F' = 000x 24x 10-3 x30cosa -1000x 36x 10-3 x 30n -Ff =-456.5N=>F = 456.5/V3-14.如图(俯视图)所示,水自喷嘴射向一与其交角成60°的光滑平板。假设喷嘴出口直径d=25mm,喷射流 量Q=33.4L/s,试求射流沿平板的分流流量QQ2以及射流对平板的作用力凡假定水头损失可忽略不计。解v0=v=v24Q 4x33.4x10-3v = 68.076m is° nd2 3.14x 0.0252x方向的动量方程:0 = v + pQ-v) - PQ)cos 60°=q =Q 2 + Qcos60°=> Q Q = Q,+ 0.5 Q=>Q, = 6.250 = 8.35L/S= Q=Q-Q = 0.75(? = 25.05L/s 12y方向的动量方程:F* = 0 - p(?(-v sin 60°)=> T = pQv sin 60° = 1969.12N o3-15.图示嵌入支座内的一段输水管,其直径从d= 1500mm变化到d?= lOOOninio假设管道通过流量qr1.8m3/s 时,支座前截面形心处的相对压强为392kPa,试求渐变段支座所受而轴向力F。不计水头损失。4q 4x1.8,. 4q 4x1_8_ _. .=> v= U- = 1.02m/s; v = 2.29m Isi 兀d? 3.14x1.52 2TtdiI2伯努利方程:PV2pV 20 + I + 1 = 0 + 2- + -2Pg 2gpg 2gnp = p +pvj-; =392x103 + 1000x102.22S =389.8981%动量方程:f解木块重量沿斜坡分力F与切力T平衡时,等速下滑.八 e ,dumg sinU = T = |x4dymg sinO 5x9.8xsin 22.0.001g = 0.1047Pa-s1-5.液体中流速沿y方向分布如图示三种情况,试根据牛顿内摩擦定律工=以6定性绘出切应力 dy沿y方向的分布图。解11-6.为导线外表红绝缘,将导线从充满绝缘涂料的模具中拉过。己知导线直径0.9mm,长度20mm,涂料 的粘度N =0.02Pa. So假设导线以速率50m/s拉过模具,试求所需牵拉力。(LOIN)解 /I = nd/ = 3.14 x 0.8x 10-3 x 20x 10-3 = 5.024 x 10-5 2F -Fr -F = pQ (v - v ) plp2 V 2 iTld 2 E兀d2 八, n p -Fr-p -2-= pq (v - v)I 42 4 U 213 14x1 5z3 14x1 O2=>392x103x1二一 F'- 389.898x 10? x 二二= 1000x1.8x(2.29-1.02)44=r=692721.18-306225.17 - 2286= 382.21 kN3-16.在水平放置的输水管道中,有一个转角a = 450的变直径弯头如下图,上游管道直径600mm,下游管道直径d, = 3()()mm,流量% = 0.425 m3/s,压强q = 140/cPq ,求水流对这段弯头的作用力,不计损失。解用连续性方程计算u4q 4x0.425v = v= 1.5 m/s;4Qv =7rd 2 it xO.622 7rd2 24x0.425= 6.02 m/s71 x 0.32(2)用能量方程式计算P2= 0.115 m;= 0.115 m;V2-i-= 1.849m 2g(V2 Vlp =p +pg|_L - | = 140 + 9.81xf0.115-1.849; = 122.98 kN/m22'12g 2g)(3)将流段1-2做为隔离体取出,建立图示坐标系,弯管对流体的作用力R的分力为R前IR,列 X Y山X和y两个坐标方向的动量方程式,得71-p _d2cos45°+尸=pQ(vcos450-0)2 4 2j 2n 71p _d 2- p _d2 cos450-尸= pQ(v cos 450 - v)1 4 242x 21将此题中的数据代入: 兀兀F = p _d 2-p _d 2cos 45° - pq (v cos450-v ) =32.27kNx 141242丫 21F = p _d2cos 45° + pg v cos 45°=7.95 kNy 2 4 2V 2+ F2 = 33.23kN0 = tan-10 = tan-1F才=13.83o水流对弯管的作用力F大小与尸相等,方向与尸相反。3-17.带胸墙的闸孔泄流如下图。孔宽B=3m,孔高力=2m,闸前水深H=4.5m,泄流量q =45m3/s,闸 前水平,试求水流作用在闸孔胸墙上的水平推力凡并与按静压分布计算的结果进行比拟。解由连续性方程:q = BHv = Bhv v q 4545=>v = _v_ =3.33m/s; v = 7.5m Isi BH 3x4.52 32动量方程:F -F - P = pq(v -v ) pl p2V 2 I=> F' = -F + F + pg (v - v ) pl p2 V 2 I=> -F1 = -LpgH2F + _Lpgh2B + pq (v - v)I 22v 2 i=-F' = -x1000x9.807x3x(22 -4.52) + 1000x45(7.5-3.33)=>-F = F = 51AkN (7)按静压强分下计算F=_p(/7-/?)2B = _xl()00x9.807x(4.5-2)2x3 = 91.94/c/V>F,=51.4/c/V 223-18.如下图,在河道上修筑一大坝。坝址河段断面近似为矩形,单宽流量q =14m3/s,上游水深h=5m, 试验求下游水深/?我水流作用在单宽坝上的水平力凡假定摩擦阻力与水头损失可忽略不计。解由连续性方程:q = Bhv = Bhvv V "214v =v = 2.8m/s; v = Bh 52 hI2由伯努利方程:v 2V 2h 4-0 + _i_=/? 4-0+ 2 =>y2-2g(h - h) + v21 2g 2 2g 212114=>()2 = 2x9,807(5-/? ) + 28 h22=> h = 1.63m2由动量方程:F -F - P = pq(v -v )p1 p2V 21=J_pg加-1Pg从一尸=pq (v - v)2122v 211=一尸'=pq(V _ U)_pg(力2_ 力2)V 21212=-F = 1000x14x(2£-2.8)-1x1000 x 9.807x(52 -1.632)1.632=> 一尸=尸=28.5/cN. F =nBa = 0.02xx5.024x10-5 = I.01/VR h0.05x10 31-7.两平行平板相距0.5mm,其间充满流体,下板固定,上板在2Pa的压强作用下以0.25m/s匀速移动, 求该流体的动力粘度。解根据牛顿内摩擦定律,得,du口 = 一 dyn = 2/n = 2/0.250.5x10-3=4 x 10-3 Pq s1-8. 一圆锥体绕其中心轴作等角速度 <o =16"% 旋转。锥体与固定壁面间的距离5 =imm,用H = 0.1Pqs的润滑油充满间隙。锥体半径R=0.3m,高H=0.5m。求作用于圆锥体的阻力矩。(39. 6N-m)解取微元体如下图微元面积:44 = 2兀广山=2兀广一空 cosh切应力:T =cor-0=Mdy 8阻力:dT=zdA阻力矩:dM =dT-rM = J dM = J rdT=kdA兀总1d帅=晌力)兀总1d帅=晌力)h3dh3 2k 82兀H妁3H& _ 7i x0.1x16x0.54 x0.63 _ 39.6/Vm48 cosO-10-3x0.857x21-9.一封闭容器盛有水或油,在地球上静止时,其单位质量力为假设干?当封闭容器从空中自由下落时,其单位质量力又为假设干?解在地球上静止时:/ = / =0; / = - x yz自由下落时:/ = / =0; / =-g+g = 0第二章流体静力学2-1.一密闭盛水容器如下图,U形测压计液面高于容器内液面h=1.5m,求容器液面的相对压强。 It1函 pp/pgh:.p = p -p =pgh = 000 x 9.807 x 1.5 = 14.7kPa e 0 a2-2.密闭水箱,压力表测得压强为4900Pa。压力表中心比A点高0.5m, A点在液面下1.5m。求液面的绝对压强和相对压强。解P =P +0.5pgA 表p = p -1.5pg = p -pg = 4900-1000x9.8 = -4900Pa0 A表p' = p + p = -4900 + 98000 = 93 IOOPq 00 a2-3.多管水银测压计用来测水箱中的外表压强。图中高程的单位为m。试求水面的绝对压强Pabu解P +P g(3.0-1.4)-p g(2.5-1.4) + p g(2.5-1.2)=p + p g(2.3-1.2) 0 水汞水a 汞P +L6p g-1.1p g+L3P g = p +l.lp g0水汞水 。汞p =p +2.2p g 2.9p g = 98000 + 2.2 x 13.6 x 103 x 9.8 - 2.9 x 103 x 9.8 = 362.8/cPa 0 a未水2-4.水管A、B两点高差h1=0.2m,U形压差计中水银液面高差hf0.2m。试求A、B两点的压强差22. 736N / mz)解 P +P 9(6 + 6) = P +P gh4水128水银2P P =P gh -P gh +h )= 13.6x103 x 9.8 x 0.2-103 x 9.8x(0.2 + 0.2) = 22736 Pa AB水银2 水122-5.水车的水箱长3m,高1.8m,盛水深1.2m,以等加速度向前平驶,为使水不溢出,加速度a的允许值 是多少?解坐标原点取在液面中心,那么自由液面方程为:a z =-x09当 x = -=-L5m 时,z = 1.8-1.2 = 0.6m ,此时水不溢出2°gz*- Q=-= 3.92m/S2x -1.52-6.矩形平板闸门AB一侧挡水。己知长/=2m,宽b=lm,形心点水深入.=2m,倾角a =45 ,闸门上缘A处设有转轴,忽略闸门自重及门轴摩擦力。试求开启闸门所需拉力。解作用在闸门上的总压力:P = p A = pgh .=1000x9.8x2x2x1 = 39200A/ cc1xlx2作用点位置:y =y +九= 2 +12=2.946/d ° ycA .45。_2_x2xisin 45。*/ y =也-/ =_?_-2= 1.828mA sina 2 sin 45, 2T x / cos 45 = P( y - y )T =生心=;92o£(2946-L828) = kN /cos 45a2xcos45。2-7.图示绕较链。转动的倾角a =60°的自动开启式矩形闸门,当闸门左侧水深h =?m,右侧水深h =Q.4m 时,闸门自动开启,试求钱链至水闸下端的距离X。解左侧水作用于闸门的压力:卜F = pgh A =" hxjbp1 ci i 2 sin 60c右侧水作用于闸门的压力:“ h h .F =pgh A =pg-r><-,-bp2 c2 22 sin 60-h1 hF (x-1-) = F (x-2-)1 h)3 sin 60。1 h)3 sin 60。力产 6。号 3 sin 6:=Pg ti- b(x 1-) = Pg t3 b(x2 sin603 sin 602 sin 60。1 h1 h=> hl(X-1_) = /12(X-2_)13 sin 60,23 sin 60=22x(x-)=0.42x(x- "4)3 sin 603 sin 60x = ().795m2-8. 一扇形闸门如下图,宽度b=L0m,圆心角a =45" ,闸门挡水深h=3m,试求水对闸门的作用力及方 向解水平分力:解水平分力:F = pgh ApxC )压力体体积:h= pg-I嗔 c-xhb = 1000x9.81xx3 = 44.145/c/V221/=/?(sin 45。3= 3x(sin 45c=1.1 629/7731/=/?(sin 45。3= 3x(sin 45c=1.1 629/773/?) + /?2 -()228 sin 45。718 sin 45。铅垂分力:F =pIZ = 1000x9.81x1.1629 = 11.41kN pz合力:F = Jf2 4- Fl = ,44.1452 + 11.412 = 45.595AN P 陷 pz方向:5-4.5。44.145F0 = arctan -nz- - arc(an Fpx2-9.如下图容器,上层为空气,中层为2-9.如下图容器,上层为空气,中层为p石油= 8l7ON/m3 的石油,下层为 p = 12550 iVnv的甘油,试求:当测压管中的甘油外表高程为9.14m时压力表的读数。的甘油,试求:当测压管中的甘油外表高程为9.14m时压力表的读数。解设甘油密度为P ,石油密度为P ,做等压面1-1,那么有12P = P 9 (V9.14 - V3.66)= p + Pg (V7.62 - V3.66)5.48p g = p +3.96pg IG2p = 5.48p g - 3.96p gG12= 12.25x5.48-8.17x3.96 = 34.78kN/m2解当!</,?时,闸门自动开启2-10.某处设置平安闸门如下图,闸门宽b=0.6m,高较接装置于距离底h?= 0.4m,闸门可绕A 点转动,求闸门自动翻开的水深h为多少米。1/,_bh311h = h + c =(h-h)+ 12 i =h- +D c F K (h-_)bh 爹-62将力代入上述不等式D112/1-6112/1-6<0.112/)-6得 h (m) 2-11.有一盛水的开口容器以的加速度3.6m/§2沿与水平面成30。夹角的斜面向上运动,试求容器中水面的倾角。解由液体平衡微分方程dp = p(fdx + fdy+fdz) x y zf = -a cos 30«, / = 0 , f = -(g + a sin 30» ) xyz在液面上为大气压,dp = 0-Qcos30odx-(g 4-a sin 3Oo)dz = 0= tana = Qcos30o = 0.269dxg + asin3()<>/.a = 15o2-12.如下图盛水U形管,静止时,两支管水面距离管口均为h,当U形管绕OZ轴以等角速度3旋转时, 求保持液体不溢出管口的最大角速度3 。nuxa>ba>b解由液体质量守恒知,I管液体上升高度与II管液体下降高度应相等,且两者液面同在一等压面上, 满足等压面方程:-z = C2g液体不溢出,要求Z -z <2h,1 II以,=q, r, = b分别代入等压面方程得:(o <22-13.如图,a = 6oo,上部油深入;=i.om,下部水深油的重度7 =8.okN/m3,求:平板ab单位 宽度上的流体静压力及其作用点。解合力P=Qb,h 1 . h i , h=Y h. + y h =+y h=-油 i sin 6o» 2 水 2 sin 6o» 油1sin 60。=46.2kN作用点: hP = _y h = 4.62kNi 2 油 i sin 6ooh = 2.69m 11 hP =_y h s-= 23.09/c/V2 2 水 2 sin6ooh,= O.7777?2hP =Y h 2 = 18.48k"油 i sin 600/i = 1.155m 3对B点取矩:Ph+Ph +Ph =PhI 12 23 3 Dh- =l.H5m Dh = 3 -/r sin 600 = 2.03m DD2-14.平面闸门AB倾斜放置,尸45°,门宽b=im,水深H1=3m, H2=2m,求闸门所受水静压力的 大小及作用点。