2022年数列常见题型总结经典名师制作优质教学资料 .pdf
高中数学数列常见、常考题型总结题型一数列通项公式的求法1前 n 项和法(知nS求na)11nnnSSSa)2()1(nn例 1、已知数列na的前 n 项和212nnSn,求数列|na的前 n 项和nT变式:已知数列na的前 n 项和nnSn122,求数列|na的前 n 项和nT练习:1、若数列na的前 n 项和nnS2,求该数列的通项公式。答案:122nna)2()1(nn2、若数列na的前 n 项和323nnaS,求该数列的通项公式。答案:nna323、设数列na的前 n 项和为nS,数列nS的前 n 项和为nT,满足22nSTnn,求数列na的通项公式。4.nS为na的前 n 项和,nS=3(na1),求na(nN+)5、设数列na满足2*12333()3nnaaaanNn-1+3,求数列na的通项公式(作差法)2.形如)(1nfaann型(累加法)(1)若 f(n)为常数,即:daann 1,此时数列为等差数列,则na=dna)1(1.(2)若 f(n)为 n 的函数时,用累加法.例 1.已知数列an满足)2(3,1111naaannn,证明213nna例 2.已知数列na的首项为1,且*12()nnaan nN写出数列na的通项公式.例 3.已知数列na满足31a,)2()1(11nnnaann,求此数列的通项公式.3.形如)(1nfaann型(累乘法)(1)当 f(n)为常数,即:qaann 1(其中 q 是不为 0 的常数),此数列为等比且na=11nqa.(2)当 f(n)为 n 的函数时,用累乘法.例 1、在数列na中111,1nnannaa)2(n,求数列的通项公式。答案:12nan练习:1、在数列na中1111,1nnannaa)2(n,求nnSa 与。答案:)1(2nnan2、求数列)2(1232,111nannaann的通项公式。4.形如srapaannn11型(取倒数法)例 1.已知数列na中,21a,)2(1211naaannn,求通项公式na练习:1、若数列na中,11a,131nnnaaa,求通项公式na.答案:231nan2、若数列na中,11a,112nnnnaaaa,求通项公式na.答案:121nan5形如0(,1cdcaann,其中aa1)型(构造新的等比数列)(1)若 c=1 时,数列 na 为等差数列;(2)若 d=0 时,数列 na 为等比数列;(3)若01且dc时,数列 na为线性递推数列,其通项可通过待定系数法构造辅助数列来求.方法如下:设)(1AacAann,利用待定系数法求出A例 1已知数列na中,,2121,211nnaaa求通项na.练习:1、若数列na中,21a,121nnaa,求通项公式na。答案:121nna2、若数列na中,11a,1321nnaa,求通项公式na。答案:1)32(23nna6.形如)(1nfpaann型(构造新的等比数列)(1)若bknnf)(一次函数(k,b是常数,且0k),则后面待定系数法也用一次函数。例题.在数列na中,231a,3621naann,求通项na.解:原递推式可化为bnkabknann)1()(21比较系数可得:k=-6,b=9,上式即为12nnbb所以nb是一个等比数列,首项299611nab,公比为21.1)21(29nnb即:nnna)21(996,故96)21(9nann.练习:1、已知数列na中,31a,2431naann,求通项公式na(2)若nqnf)(其中 q 是常数,且n0,1)若 p=1 时,即:nnnqaa1,累加即可若1p时,即:nnnqapa1,后面的待定系数法也用指数形式。两边同除以1nq.即:qqaqpqannnn111,令nnnqab,则可化为qbqpbnn11.然后转化为类型5 来解,例 1.在数列na中,521a,且)(3211Nnaannn求通项公式na1、已知数列na中,211a,nnnaa)21(21,求通项公式na。答案:121nnna2、已知数列na中,11a,nnnaa2331,求通项公式na。答案:nnna23371题型二根据数列的性质求解(整体思想)1、已知nS为等差数列na的前n项和,1006a,则11S;2、设nS、nT分别是等差数列na、na的前n项和,327nnTSnn,则55ba .3、设nS是等差数列na的前 n 项和,若5935,95SSaa则()文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G55、在正项等比数列na中,153537225a aa aa a,则35aa_。6、已知nS为等比数列na前n项和,54nS,602nS,则nS3 .7、在等差数列na中,若4,184SS,则20191817aaaa的值为()8、在等比数列中,已知910(0)aaa a,1920aab,则99100aa .题型三:证明数列是等差或等比数列A)证明数列等差例 1、已知数列 an的前 n项和为 Sn,且满足an+2SnSn1=0(n2),a1=21.求证:nS1是等差数列;B)证明数列等比例 1、已知数列na满足*12211,3,32().nnnaaaaanN证明:数列1nnaa是等比数列;求数列na的通项公式;题型四:求数列的前n 项和基本方法:A)公式法,B)分组求和法1、求数列n223n的前n项和nS.2.)12()1(7531nSnn3.若数列 an的通项公式是an(1)n(3n2),则 a1a2 a10()A15 B12 C 12 D 15 4.求数列 1,2+21,3+41,4+81,121nn5.已知数列 an 是 32 1,6221,9231,12241,写出数列an 的通项公式并求其前n 项和 Sn.C)裂项相消法,数列的常见拆项有:11 11()()n nkknnk;nnnn111;例 1、求和:S=1+n32113211211例 2、求和:nn11341231121.D)倒序相加法,例、设221)(xxxf,求:).2010()2009()2()()()()(21312009120101fffffffE)错位相减法,1、若数列na的通项nnna3)12(,求此数列的前n项和nS.2.21123(0)nnSxxnxx(将分为1x和1x两种情况考虑)题型五:数列单调性最值问题例 1、数列na中,492nan,当数列na的前n项和nS取得最小值时,n .文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5例 2、已知nS为等差数列na的前n项和,.16,2541aa当n为何值时,nS取得最大值;例 3、设数列na的前n项和为nS已知1aa,13nnnaS,*nN()设3nnnbS,求数列nb的通项公式;()若1nnaa,*nN,求a的取值范围题型六:总结规律题1 已知数列na满足),2(525*11Nnnaaannn,且na前 2014 项的和为403,则数列1nnaa的前 2014项的和为?2 数列 an满足 an+1(1)n an2n1,则 an 的前 60 项和为?常见练习1方程2640 xx的两根的等比中项是()A3B2C6D22、已知等比数列na的前三项依次为1a,1a,4a,则naA342nB243nC1342nD1243n3一个有限项的等差数列,前 4 项之和为40,最后 4 项之和是80,所有项之和是210,则此数列的项数为()A12 B14C16 D18 4an是等差数列,10110,0SS,则使0na的最小的 n 值是()A5 B6C7 D8 5.若数列22331,2cos,2 cos,2 cos,前 100 项之和为0,则的值为()A.()3kkZB.2()3kkZC.22()3kkZD.以上的答案均不对6.设 2a=3,2b=6,2c=12,则数列 a,b,c 成A.等差B.等比C.非等差也非等比D.既等差也等比7如果等差数列na中,34512aaa,那么127.aaa()(A)14 (B)21 (C)28 (D)35 8.设数列na的前 n 项和3Snn,则4a的值为()(A)15 (B)37 (C)27 (D)64 9.设等比数列na的公比2q,前 n 项和为nS,则42Sa()A2B4C215D21710.设nS为等比数列na的前n项和,已知3432Sa,2332Sa,则公比q()文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5(A)3 (B)4 (C)5 (D)6 11已知na是等比数列,22a,514a,则12231nna aa aa a()A32(12)3nB16(1 4)nC16(1 2)nD32(14)3n12.若数列na的通项公式是(1)(32)nnan,则1220aaa()(A)30 (B)29 (C)-30 (D)-29 13.已 知等 比 数 列na满 足0,1,2,nan,且25252(3)nnaan,则 当1n时,212322l o gl o gl o gnaaa()A.(21)nn B.2(1)n C.2n D.2(1)n14 巳知函数()cos,(0,2)f xx x有两个不同的零点12,x x,且方程()f xm有两个不同的实根34,xx.若把这四个数按从小到大排列构成等差数列,则实数m的值为()ABCD15已知等比数列an的前 n 项和 Snt 5n215,则实数t 的值为()A4 B5 C.45D.1516已知等差数列an的前 n 项和为 Sn,a4+a7+a10=9,S14S3=77,则使 Sn取得最小值时n 的值为()A4B5C6D717若 an是等差数列,首项a10,公差 d0,且 a2 013(a2 012a2 013)0 成立的最大自然数n 是()A4 027 B 4 026 C4 025 D4 024 18已知数列满足:a1 1,an1anan2,(nN*),若bn1(n)1an1,b1 ,且数列 bn是单调递增数列,则实数 的取值范围为()A 2 B 3 C 2 D 319、由正数构成的等比数列an,若132423249aaa aa a,则23aa20已知数列na的前n项和为2,nSn某三角形三边之比为234:aaa,则该三角形最大角为21、给定(1)log(2)nnan(nN*),定义乘积12kaaa为整数的k(kN*)叫做“理想数”,则区间 1,2008内的所有理想数的和为22设1,a d为实数,首项为1a,公差为d的等差数列na的前项和为nS,满足34150S S,则d的取值范围为文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G523设正整数数列na满足:24a,且对于任何*nN,有11111122111nnnnaaaann,则10a24.已知na为等比数列,472aa,568a a,则110aa_.25.设等差数列na的公差d不为 0,19ad若ka是1a与2ka的等比中项,则k_.26、已知函数()f x是一次函数,且(8)15,f(2),(5),(14)fff成等比数列,设()naf n,(nN)(1)求1niia;(2)设2nnb,求数列nna b的前 n 项和nS。27、已知数列na中,12a,23a,其前n项和nS满足1121nnnSSS(2n,*nN)(1)求数列na的通项公式;(2)设14(1)2(nannnb为非零整数,*nN),试确定的值,使得对任意*nN,都有nnbb1成立28已知数列 na 中1221521,4,.33nnnaaaaa满足(I)设1nnnbaa,求证数列 nb 是等比数列;()求数列 na 的通项公式29已知等差数列na满足:14,9625aaa.()求na的通项公式;()若nannqab(0q),求数列nb的前 n 项和nS.30已知数列na的前n项和为nS,且11,4a*1()16nntaStnN,为常数.()若数列na为等比数列,求t的值;()若14,lgntban,数列nb前n项和为nT,当且仅当 n=6 时nT取最小值,求实数t的取值范围31是一个公差大于0 的等差数列,521,aaa成等比数列,1462aa.()求数列的通项公式;()若数列和数列满足等式:=,求数列的前 n 项和32已知数列na满足1111,14nnaaa,其中nN*.()设221nnba,求证:数列nb是等差数列,并求出na的 通 项 公 式na;()设41nnacn,数 列2nnc c的 前n项 和 为nT,是 否 存 在 正 整 数m,使 得11nmmTc c对于nN*恒成立,若存在,求出m的最小值,若不存在,请说明理由.33 已知各项均为正数的数列na前 n 项和为nS,首项为1a,且nnSa,21成等差数列.(1)求数列na的通文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5文档编码:CO4I3Q2I3V6 HN3F2R6X7U8 ZP1Q5K1X3G5项公式;(2)若nbna)21(2,设nnnabc,求数列nc的前 n 项和nT.34一个等比数列na中,14232812aaaa,求这个数列的通项公式.35有四个数:前三个成等差数列,后三个成等比数列。首末两数和为16,中间两数和为12.求这四个数.36.已知等差数列na满足:25a,5726aa,数列na的前n项和为nS()求na及nS;()设nnba是首项为1,公比为3 的等比数列,求数列nb的前n项和nT.37.设na是公比为正数的等比数列,12a,324aa.()求na的通项公式