欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2022年数列高考复习题 .pdf

    • 资源ID:60498395       资源大小:99.49KB        全文页数:9页
    • 资源格式: PDF        下载积分:4.3金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要4.3金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2022年数列高考复习题 .pdf

    数列1 an是首项 a11,公差为d3 的等差数列,如果an2 005,则序号n 等于()A667 B668 C669 D670 2在各项都为正数的等比数列 an中,首项a13,前三项和为21,则 a3a4a5()A33 B72 C84 D189 3如果 a1,a2,a8为各项都大于零的等差数列,公差d0,则()Aa1a8a4a5 Ba1a8a4a5Ca1 a8a4a5Da1a8a4a54已知方程(x2 2xm)(x22xn)0 的四个根组成一个首项为41的等差数列,则mn等于()A1 B43C21D835等比数列 an 中,a29,a5243,则 an的前 4 项和为().A81 B120 C168 D192 6若数列 an 是等差数列,首项a10,a2 003a2 0040,a2 003a2 0040,则使前 n 项和 Sn0 成立的最大自然数n是()A4 005 B4 006 C4 007 D4 008 7已知等差数列 an的公差为2,若 a1,a3,a4成等比数列,则 a2()A 4 B 6 C 8 D 10 8设 Sn是等差数列 an 的前 n 项和,若35aa95,则59SS()A1 B 1 C2 D219已知数列1,a1,a2,4 成等差数列,1,b1,b2,b3,4 成等比数列,则212baa的值是()A21B21C21或21D4110在等差数列an中,an0,an12na an1 0(n2),若 S2n138,则 n()A38 B20 C10 D9 二、填空题11 设 f(x)221x,利用课本中推导等差数列前n 项和公式的方法,可求得 f(5)f(4)f(0)f(5)f(6)的值为.12已知等比数列an 中,(1)若 a3a4a58,则 a2a3a4a5 a6(2)若 a1a2324,a3a436,则 a5a6(3)若 S42,S86,则 a17a18a19a20.13在38和227之间插入三个数,使这五个数成等比数列,则插入的三个数的乘积为14在等差数列an中,3(a3a5)2(a7a10a13)24,则此数列前13 项之和为.15在等差数列an中,a53,a6 2,则 a4a5 a10.16设平面内有n 条直线(n 3),其中有且仅有两条直线互相平行,任意三条直线不过同一点若用f(n)表示这 n条直线交点的个数,则f(4);当 n4 时,f(n)三、解答题17(1)已知数列 an的前 n 项和 Sn3n22n,求证数列 an 成等差数列.(2)已知a1,b1,c1成等差数列,求证acb,bac,cba也成等差数列.18设 an是公比为q 的等比数列,且a1,a3,a2成等差数列(1)求 q 的值;(2)设 bn 是以 2 为首项,q 为公差的等差数列,其前n 项和为 Sn,当 n2 时,比较Sn与 bn的大小,并说明理由文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N619数列 an的前 n 项和记为Sn,已知 a11,an1nn2Sn(n1,2,3)求证:数列 nSn是等比数列20已知数列 an是首项为a 且公比不等于1 的等比数列,Sn为其前 n 项和,a1,2a7,3a4成等差数列,求证:12S3,S6,S12S6成等比数列.第二章数列参考答案一、选择题1C 文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6解析:由题设,代入通项公式ana1(n1)d,即 2 00513(n1),n6992C 解析:本题考查等比数列的相关概念,及其有关计算能力设等比数列 an的公比为q(q0),由题意得a1a2 a321,即 a1(1qq2)21,又 a1 3,1qq27解得 q2 或 q 3(不合题意,舍去),a3a4a5a1q2(1qq2)322 7843B解析:由 a1 a8a4a5,排除C又 a1a8a1(a17d)a127a1d,a4a5(a1 3d)(a14d)a127a1d 12d2a1 a84C 解析:解法 1:设 a141,a241d,a3412d,a4413d,而方程 x22xm0 中两根之和为2,x22xn0 中两根之和也为2,a1a2a3a416d4,d21,a141,a447是一个方程的两个根,a143,a345是另一个方程的两个根167,1615分别为 m 或 n,mn21,故选 C解法 2:设方程的四个根为x1,x2,x3,x4,且 x1x2x3x42,x1x2m,x3x4n由等差数列的性质:若 spq,则 a asapaq,若设 x1为第一项,x2必为第四项,则x247,于是可得等差数列为41,43,45,47,m167,n1615,mn215B 解析:a29,a5243,25aaq3924327,q3,a1q9,a13,文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6S43133522401206B 解析:解法 1:由 a2 003a2 0040,a2 003a2 004 0,知 a2 003和 a2 004两项中有一正数一负数,又a10,则公差为负数,否则各项总为正数,故a2 003a2 004,即 a2 0030,a2 0040.S4 0062006400641)(aa2006400420032)(aa0,S4 00720074(a1a4 007)200742a2 0040,故 4 006 为 Sn0 的最大自然数.选 B解法 2:由 a10,a2 003a2 0040,a2 003a2 0040,同解法 1 的分析得a2 0030,a2 0040,S2 003为 Sn中的最大值Sn是关于 n 的二次函数,如草图所示,2 003 到对称轴的距离比2 004 到对称轴的距离小,20074在对称轴的右侧根据已知条件及图象的对称性可得4 006 在图象中右侧零点 B 的左侧,4 007,4 008都在其右侧,Sn0 的最大自然数是4 0067B 解析:an是等差数列,a3a14,a4a16,又由 a1,a3,a4成等比数列,(a14)2a1(a16),解得 a1 8,a2 82 68A 解析:59SS2)(52)(95191aaaa3559aa59951,选 A9A 解析:设 d 和 q 分别为公差和公比,则4 13d 且 4(1)q4,d 1,q22,(第 6 题)文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6212baa2qd2110C 解析:an为等差数列,2na an1an1,2na 2an,又 an0,an2,an为常数数列,而 an1212nSn,即 2n123819,n10二、填空题1123解析:f(x)221x,f(1x)2211xxx2222xx22221,f(x)f(1x)x221xx22221xx222211xx22)22(2122设 Sf(5)f(4)f(0)f(5)f(6),则 Sf(6)f(5)f(0)f(4)f(5),2S f(6)f(5)f(5)f(4)f(5)f(6)62,Sf(5)f(4)f(0)f(5)f(6)32 12(1)32;(2)4;(3)32解析:(1)由 a3a524a,得 a42,a2a3a4a5a654a 32(2)9136)(324222121qqaaaa,a5a6(a1 a2)q44(3)224444821843214qqSSaaaSaaaaS,a17a18a19a20S4q163213216文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6解析:本题考查等比数列的性质及计算,由插入三个数后成等比数列,因而中间数必与38,227同号,由等比中项的中间数为227386,插入的三个数之积为3822762161426解析:a3a52a4,a7a132a10,6(a4a10)24,a4a104,S13213131)(aa213104)(aa2413 2615 49解析:da6a5 5,a4a5 a10 27104)(aa25755)(dada7(a52d)49165,21(n1)(n 2)解析:同一平面内两条直线若不平行则一定相交,故每增加一条直线一定与前面已有的每条直线都相交,f(k)f(k1)(k1)由 f(3)2,f(4)f(3)3235,f(5)f(4)42349,f(n)f(n1)(n1),相加得 f(n)234(n1)21(n1)(n2)三、解答题17分析:判定给定数列是否为等差数列关键看是否满足从第2 项开始每项与其前一项差为常数证明:(1)n1 时,a1S1321,当 n2 时,anSnSn13n22n 3(n 1)22(n1)6n5,n1 时,亦满足,an6n 5(nN*)文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D2D6D1 HJ4Y4R6R3K7 ZO10K3R3W9N6文档编码:CH5A10D

    注意事项

    本文(2022年数列高考复习题 .pdf)为本站会员(H****o)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开