欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    -概率论和数理统计解答.pdf

    • 资源ID:60498918       资源大小:108.26KB        全文页数:6页
    • 资源格式: PDF        下载积分:4.3金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要4.3金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    -概率论和数理统计解答.pdf

    一.填空题:(每题3 分,共 15 分)1.设 A、B 为两事件,P(A)=0.7,P(B)=0.6,AB,则()P A B=0.25 .2.若随机变量X 在0,1上服从均匀分布,Y=2X+1 的概率密度为:3 若随机变量(X,Y)的联合概率密度为(23),0,0(,)0,xycexyf x y其他,则C=6 。4.若随机变量X 服从参数为2指数分布X e(2),则2()E XX=1 .5.若随机变量X 的数学期望与方差分别为EX=1,DX=1,且114PX,根据切比雪夫不等式,应满足2 303。二.选择题:(每题3 分,共 15 分)1.设 A、B、C 为三事件,则ABBCAC表示 .DA、B、C 至多发生一个2.设随机变量X 的密度函数为3014,()0,xxf x其他,则使 P(X a)=P(X a)成立,a为 .A 1423.若随机变量(X,Y)的概率密度为221/,1(,)0 xyf x y,其它,则X 与 Y 的随机变量 .C不独立同分布 .4设随机变量X 在a,b上服从均匀分布,且EX=3,DX=4/3,则参数a,b的值为.Ba=1,b=5 5.若12,nXXX是取自总体2(,)N的一个样本,已知,未知,则以下是统计量的是 .A 21()/niiXX1,13()20,Yyfy其它三.判断题:(每题2 分,共 10分)1.若 A 与 B 互斥,则P(AB)=0。(对)2.若()F x是连续变量X 的分布函数,则()1F x dx。(错)3.若(X,Y)的 联 合 概 率 函 数 与 边 缘 概 率 函 数 之 间 存 在 关 系 式(,)()()iXiYjP x yPxP yj,1,2,ij、,则 X 与 Y 独立。(对)4.若随机变量X 与 Y 独立,则有()D XYDXDY。(错)5.若12,nXXX是取自总体X 的简单随机样本,则1X与2X同分布。(对)四|计算题:(每题10 分,共 60 分)1.按以往概率论考试结果分析,努力学习的学生有90%的可能考试及格,不努力学习的学生有 90%的可能考试不及格.据调查,学生中有80%的人是努力学习的,试问:(1)考试及格的学生有多大可能是不努力学习的人?(2)考试不及格的学生有多大可能是努力学习的人?【解】设 A=被调查学生是努力学习的,则A=被调查学生是不努力学习的.由题意知P(A)=0.8,P(A)=0.2,又设B=被调查学生考试及格.由题意知P(B|A)=0.9,P(B|A)=0.9,故由贝叶斯公式知(1)()()()()()()()()()P A P B AP ABP A BP BP A P B AP A P B A0.20.110.027020.80.90.20.137即考试及格的学生中不努力学习的学生仅占2.702%(2)()()()()()()()()()P A P B AP ABP A BP BP A P B AP A P B A0.80.140.30770.80.10.20.913即考试不及格的学生中努力学习的学生占30.77%.2.从 五 个 数1,2,3,4,5 中 任 取3 个 数123xxx,求:(1)随 机 变 量123maxXxxx,的概率分布;(2)随机变量X 的分布函数;(3)4P X。解:(1)X 的可能值是3,4,5.易知文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S72121352131352141351(3)0.1103(4)0.3,106(5)0.610C CP XCC CP XCC CP XC因此,所求的概率分布为X 3 4 5 P(xi)0.1 0.3 0.6(2)根据()()iixxF xP Xxp x得0,30.1,34()0.4,451,5xxF xxx(注意区间分段)(3)故所求的概率为4340.10.30.4P XP XP X3.设随机变量(X,Y)的概率密度为f(x,y)=.,0,10,1其他xxy求条件概率密度fYX(y x),fXY(xy).题 3 图【解】()(,)dXfxf x yy1d2,01,0,.xxyxx其他文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7111d1,10,()(,)d1d1,01,0,.yYyxyyfyf x yxxyy其他所以|1,|1,(,)(|)2()0,.Y XXyxf x yfy xxfx其他(注意区间分段)|1,1,1(,)1(|),1,()10,.X YYyxyf x yfx yyxfyy其他4.设随机变量X 的概率密度为1(),2xf xex求随机变量X 的数学期望EX 与方差 DX。解:由题设可得()102xEXx fx dxxedx(偶函数在对称区间上的数学期望均为0)222220022000001()2()()()022()22xxxxxxxxEXxf x dxxedxxe dxx dexee dxxe dxx dee dx22()202DXEXEX5设总体X的概率密度为文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S71,01()0,xxf x其他其中 0,如果取得的样本观测值为12,nx xx,求参数 的最大似然估计值。解:由于总体X的概率密度为1,01()0,xxf x其他故似然函数为11()niiLx取对数,得1111ln()ln()ln(1)lnln(1)ln.nniiiiniiLxxnx对求导数,并让它等于零,得似然方程1ln()ln0niidLnxd由此解得的最大似然估计值为1lnniinx.6某工厂正常情况下生产的电子元件的使用寿命2(1600,80)XN,从该工厂生产的一批电子元件中抽取9 个,测得它们使用寿命的平均值为1540(小时),如果使用寿命的标准差不变,能否认为该工厂生产的这批电子元件使用寿命的均值=1600(小时)?(附:检验水平0.050.0250.050.0250.05,1.645,1.96,(8)1.86,(8)2.31uutt)解:提出待检假设:01:1600;:1600HH 选取统计量:001600(0,1)/80/9XXuNn对于给定的检验水平0.05,查表确定临界值0.02521.96uu,从而给出拒绝文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7域:21.960.05P uu 计算判断:1540 16002.251.9680/9u故拒绝0H,接受1H,即:不能认为该批电子元件的平均使用寿命为1600 小时。文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7文档编码:CD8I8Y5R5Y8 HF1W1O8X8Q1 ZD10Y8T4L10S7

    注意事项

    本文(-概率论和数理统计解答.pdf)为本站会员(H****o)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开