2022年圆锥曲线复习题教案修改版 .pdf
学习好资料欢迎下载圆锥曲线复习训练题(一)一选择题:1 曲线与曲线(0 k0,mb0)的离心率互为倒数,那么以a、b、m 为边长的三角形是()A、锐角三角形B、直角三角形C、钝角三角形D、等腰三角形192522yx192522kykx12222byax12222bymx21222333学习好资料欢迎下载二、填空题:12、椭圆x29+y24=1(x 0,y 0)与直线 x-y-5=0 的距离的最小值为_ 13、过双曲线的两焦点作实轴的垂线,分别与渐近线交于A、B、C、D 四点,则矩形ABCD的面积为14、抛物线的焦点为椭圆14922yx的左焦点,顶点在椭圆中心,则抛物线方程为.15、动点到直线 x=6的距离是它到点A(1,0)的距离的 2倍,那么动点的轨迹方程是三、解答题:16.已知点(3,0)A和(3,0),B动点 C 引 A、B 两点的距离之差的绝对值为2,点 C 的轨迹与直线2yx交于 D、E 两点,求线段DE 的长。17.已知抛物线的顶点为椭圆22221xyab(0)ab的中心.椭圆的离心率是抛物线离心率的一半,且它们的准线互相平行。又抛物线与椭圆交于点22 6(,)33M,求抛物线与椭圆的方程.18.双曲线)0,1(12222babyax的焦距为2c,直线l过点(a,0)和(0,b),且点(1,0)到直线l的距离与点(1,0)到直线l的距离之和.54cs求双曲线的离心率e 的取值范围.20.已知双曲线经过点M(6,6)(1)如果此双曲线的右焦点为F(3,0),右准线为直线x=1,求双曲线方程;(2)如果此双曲线的离心率e=2,求双曲线标准方程21、已知椭圆)0(12222babyax的离心率为22。(1)若圆(x-2)2+(y-1)2=320与椭圆相交于A、B两点且线段AB恰为圆的直径,求椭圆方程(2)设 L 为过椭圆右焦点F 的直线,交椭圆于M、N 两点,且 L 的倾斜角为600。求NFMF的值。1322yx文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4学习好资料欢迎下载参考答案一、选择题1、B 2、D 3、A 4、C 5、B 6、B 7、A 8、D 9、C 10、D 11、B二、填空题13、-8 14、15、xy542 16、3x24y24x 32=0 三、解答题17.解:设点(,)C x y,则2.CACB根据双曲线定义,可知C 的轨迹是双曲线22221,xyab由22,22 3,acAB得221,2,ab故点 C 的轨迹方程是221.2yx由22122yxyx得2460,0,xx直线与双曲线有两个交点,设1122(,),(,),D x yE xy则12124,6,xxx x故21212121 12()44 5.DExxxxx x18.因为椭圆的准线垂直于x轴且它与抛物线的准线互相平行所以抛物线的焦点在x轴上,可设抛物线的方程为)0(2aaxy)362,32(M在抛物线上a32)362(24a抛物线的方程为xy42)362,32(M在椭圆上19249422ba 又2122abaace由可得3,422ba椭圆的方程是13422yx19.解:直线l的方程为1byax,即.0a ba yb x由点到直线的距离公式,且1a,得到点(1,0)到直线l的距离221)1(baabd,同理得到点(1,0)到直线l的距离222)1(baabd.222221cabbaabdds由,542,54ccabcs得即.25222caca于 是 得.025254,2152422eeee即解不等式,得.5452e由于,01e所以e的取值范围是.525e3316文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4学习好资料欢迎下载20 解:(1)双曲线经过点M(6,6),且双曲线的右准线为直线x=1,右焦点为F(3,0)由双曲线定义得:离心率16)06()36(1622MFe=3设 P(x,y)为所求曲线上任意一点,由双曲线定义得:1)0()3(122xyxxPF=3化简整理得16322yx(2),22acaceabbac3,222又当双曲线的焦点在x 轴上时,设双曲线标准方程为132222ayax,点M(6,6)在双曲线上,136622aa,解得42a,122b,则所求双曲线标准方程为112422yx当双曲线的焦点在y 轴上时,设双曲线标准方程为132222axay,点 M(6,6)在双曲线上,136622aa,解得42a,122b,故所求双曲线方程为112422yx或112422xy21.解:(1)设 A(x1,y1),B(x2,y2),AB 的方程为y-1=k(x-2)即 y=kx+1-2k 离心率 e=22椭圆方程可化为122222bybx将代入得(1+2k2)x2+4(1-2k)kx+2(1-2k)2-2b2=0 x1+x2=421)12(42kkk k=-1 x1x2=2232621218bb又3202AB32021121xx即340)(221xxb2=8 181622yx(2)设nNFmMF,(不妨设mn)则由第二定义知)(21nmemen即7249122122nm或7249nm7249NFMF或7249NFMF文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4文档编码:CD3Z8A1A6Y8 HU4K1E1O7I4 ZS6K1S2W4B4